MR. ARCHITECTURE

by Kade Hansson
Building a Database Application

_* What is Mr Architecture?

Mr Architecture is a component architecture based on Enterprise Java Beans
(EJB.) Enterprise Java Beans simplifies the development of medium to large scale
applications by reducing the amount of low-level services the application
developer needs to design and implement. It is a middleware tier at a higher level
of abstraction than databases and transaction handling which leverages object-
oriented design to support rapid application development.

Mr Architecture takes a part of EJB- arguably the most promising part in
developing efficient applications based on the technology- and emphasizes still
further the possibility of automating low-level considerations through the
inference of bean relationships and the automatic generation of bean
components.

The hallmark properties of Mr Architecture are:
 Simplicity

* Bean provider supplies three components per business object
type, with one being completely generated automatically
(under EJB, the bean provider must also supply a deployment descriptor)

* First component is partially defined through inheritance, partially
defined through graphical modelling (e.g. Rational Rose) and
partially defined by automatic code generation scripts in the
modelling tool

* Second component is partially defined through graphical
modelling (e.g. Rational Rose) and partially defined by an automatic
code generation script

 Third component is generated entirely by a script in a graphical
modelling tool (e.g. Rational Rose)

* Deployment descriptor (describing bean interrelationships) is
inferred given naming conventions

* One-to-one mapping between business object types and database
tables, which are synchronized by tools (e.g. Rational Rose)

* Excellent scalability

* Java makes it easy to migrate to more powerful hardware to
accomodate new demands in both the server and client

* No limits on number of business objects in the architecture

MR. ARCHITECTURE Building a Database Application 1

No complex configuration needed to include new business
objects...

1 generate the required components direct from an
object model using scripts within the modelling tool

2 use the modelling tool to generate the database tables

3 add two lines to the application’s MrContainerFactory

4 generate the Mr Architecture implementation classes
using DeploymentTool

 High portability

Java offers write once, run anywhere capability

Server deployment can occur in any servlet enabled web server
(e.g. Apache Tomcat or Sun Microsystems iPlane?)

Client deployment can occur in any Java-enabled web browser or
computer with standalone Java runtime environment

* High speed

Unlike EJB, object interations occur at object granularity instead
of method granularity (sacrificing concurrency and load
balancing capacity for a performance trade off)

Java’s HotSpot performance engine delivers object code which
runs as fast as C

Transport layer uses Java object serialization for a compact and
robust data representation

Transport layer capable of communicating a virtually unlimited
number of related business objects in one or two handshakes

Server is multi-threaded for low latency

Server caches object representations of frequently accessed
database records and record sets

Database connections are pooled so that during periods of high
demand, many transactions from multiple clients can be
processed simultaneously

* Modest resource demands

Mr Architecture demands no more resources than any other
enterprise grade application. It requires:
* space for recording metadata about business objects
* space for recording transaction states
* some space for caching (but flexible)

* time as required for multiple concurrent transactions
from application clients to progess

What is Mr Architecture?

* enough space for all the data in any concurrent
transactions application clients might make

* areasonably efficient network transport

 Based on accepted standards

* Java 2 Enterprise Edition (J2EE)

* Java Database Connectivity (JDBC)
Enterprise Java Beans (E)B)

Java Servlet API

* Java Transaction API

.* What are beans?

The core component type of a Mr Architecture application is a bean. A Mr
Architecture bean (or Mr Bean for short) is a variation of an Enterprise Java Bean
(EJB.) Specifically it is a slightly non-standard form of a local entity bean with
container-managed persistence (CMP.) The full meaning of this will be explained
in the next section.

A Mr Bean is a component which encapsulates the business logic of a business
entity. It can be a client-side or a server-side component. The business logic is the
code that allows the business entity to perform the tasks which an application
needs to fulfill the needs of an enterprise. For example, business methods defined
in an Order bean, such as relateOrderItem and cancelOrder, may implement
part of the business logic of an ordering application for an online store.

Mr Beans hae the following characteristics:

» Mr Beans are persistent- they are able to exist beyond the lifetime of the
application in which they run.

 They can participate in relationships with other Mr Beans.

» They have primary keys so they can be uniquely identified.

» They can be accessed by multiple clients simultaneously.

Persistence

A Mr Bean is an object with a persistent representation in a database. A class of
Mr Beans of a particular business object type (say an Order) is represented in a
relational database table of the same name. Each record in the table corresponds
to a single object instance.

Relationships

Each Mr Bean may have relationships to other Mr Beans. For example, an Order
bean may be related to other persistent business objects (such as Orderltems), and
these relationships are mapped onto database relations in a way which should be
largely transparent to the application developer and of only minor concern to the
bean developer.

MR. ARCHITECTURE Building a Database Application 3

Primary key

Just as a relational database table has a primary key field, so does a class of Mr
Beans of a particular type. The primary key value assigned to a Mr Bean instance
is a unique identifier among Mr Beans of the same type (e.g. you cannot have two
Orders numbered 1,) just as database row’s primary key value is unique in its
table.

Multiple clients

Beans may be accessed simultaneously by multiple clients. Because one or more
of these clients may wish the change a group of beans at the same time but in
mutually incompatible ways, they may protect a sequence of changes by
wrapping them in a transaction. That is, either all the changes in a single
transaction become persistent, or none of them do.

How are Mr Beans different from EJBs?

An EJB is a server-side component encapsulating the business object of an
application, but not necessarily a business entity. An EJB may be an entity bean
(like a Mr Bean), a session bean or a message-driven bean. Additionally an entity
bean may be remote or local. EJBs are supported by an implementation of the EJB
specification, which must exist in each server supporting EJB applications.

Local Y Y
Remote K /K J\
"'ilp a'e@s Ssy,
OQQ Qgeb o"b
" "I",e QQQ
g,

[] Supported by Mr Architecture
[] InEJB, but not Mr Architecture

The Mr Architecture container is a slightly non-standard EJB implementation
which does not support beans that are anything other than local entity beans with
container-managed persistence. Put simply, it only supports Mr Beans, or at least
beans which are capable of acting like Mr Beans.

« A Mr Bean is local because it is always accessed within the scope of a
single Java virtual machine.
* It’s an entity bean because it maps onto a business entity.

* It's container-managed because database accesses occur indirectly through
the action of the architecture, and do not need to be manually coded. Mr
Architecture cannot support beans with bean-managed persistence (BMP,)
which implement their own database access methods.

* |t’s non-standard in two main areas:

Primary key

1 Life-cycle diverges from the EJB 2.0 specification, and therefore
transaction management is also divergent.

 The semantics of create are different. A Mr Bean does
not exist in the database until it is explicitly stored
subsequent to the create. A create occurs immediately
irrespective of the current transaction state.

* The life-cycle events load and store are under client
control. Mr Beans are therefore a form of entity bean
with client-managed persistence'- a concept which EJB
2.0 does not define. A load occurs immediately
irrespective of the current transaction state, while a
store only occurs immediately outside of a transaction.

* Because transactions are managed only for bean life-
cycle events, encapsulating business methods in
transactions has no effect in an EJB application
deployed under Mr Architecture. All business methods
execute immediately, and only their life-cycle calls will
be transaction managed (in accordance with the
foregoing.)

2 A bean is referred to through the Java class names of a bean’s
components, and references are obained through the Mr
Architecture container, not the Java Directory and Naming
Interface (JDNI.)

It is not currently possible (under Mr Architecture 2.0) to write a generally useful
Mr Bean which complies fully with the EJB 2.0 specification. Provision for this is
likely to be made in future incarnations of Mr Architecture, along with facilities
for converting old beans to use facilities compatible with current and future EJB
specifications.

The Mr Architecture container, unlike other EJB containers, is not entirely
transparent. However, like other EJB containers, it does provide services such as
transaction management. Also, because Mr Architecture beans are always local,
Mr Architecture containers exist in both server and client, wheras in a typical EJB
application containing remote beans, the client communicates with beans in a
server container.

A consequence of Mr Beans not being restricted to a server context is that
multiple copies of a bean may exist in multiple clients (as well as in the server) to
service simulataneous access. In such situations, the first copy successfully
committed to persistent storage as part of a transaction will stand, and successive
transactions involving copies of the same or older generations will not succeed.

! Client-managed persistence is a form of container-managed persistence where the
container is involved in implementing life-cycle event handling, but not in determining
when those life-cycle events occur. i.e. The client determines at what point a Mr
Architecture bean is loaded or stored, but the Mr Architecture container does the work.

MR. ARCHITECTURE Building a Database Application 5

This behaviour is available only for beans with a lastUpdateDateTime field of
type java.util. Date (backed in the database by an SQL timestamp data type.)
Otherwise, the last bean committed wins persistence (so that it is possible for data
to regress.)

It is the local nature of Mr Architecture beans which gives applications built for
this architecture a greater efficiency over most other EJB applications, which rely
heavily on remote method invocation (RMI.) This efficiency comes about
because communication in Mr Architecture occurs in brief bursts, as beans are
transmitted to and from clients. In EJB applications using remote beans, there will
be a continuous stream of handshakes as the client interacts with a bean on a
remote server. Mr Architecture therefore takes advantage of a larger granularity of
network communication.

The overhead of using remote beans is widely acknowledged in EJB literature,
and this overhead was indeed the motivation for the inclusion of local beans in
EJB 2.0. In particular, many book and tutorial authors encourage the creation of
business methods in remote beans which do larger volumes of work than they
otherwise might to mitigate the overhead of remote interactions. Still other
authors suggest using technologies other than EJB to write database applications,
or advocate the transmission of local beans directly to clients. This latter
approach is the one taken by Mr Architecture.

To not use EJB is to sacrifice the powerful object-oriented approach to data which
it provides, and to workaround system overheads by increasing method
granularity is counter to good object-oriented design priciples. Mr Architecture is
therefore probably in line with the future evolution of EJB to support a wider
variety of database applications more efficiently.

Bean development and deployment

Like EJB, Mr Architecture divides the work of constructing an application into two
roles.

» The bean developer or bean provider is responsible for modelling and
creating the bean components which may make up applications. The bean
developer should aim for platform-independence and the capacity for reuse
in the widest variety of applications possible.

« The bean deployer or application developer is responsible for assembing
the beans into a complete working application. The bean deployer should
be able to insert ready-made beans into their application and proceed to
code business workflows and user interfaces based around them.

For small and medium sized projects it may be appropriate for team members to
play both roles, perhaps dividing the work by functional area rather than along
strict bean developer and deployer lines. However, even where this is the case,
each team member should realise the requirements and aims of the role they are
playing in each software development task.

Bean development and deployment

Responsibilities of the bean developer

For the bean developer, a Mr Bean is made up of three components, two of
which are different views of the same thing. The central component is the entity
bean class, which consists of life-cycle methods, persistent fields, relationship
fields, business methods and internal methods and fields. Related to this
component is the local component interface, which exposes the persistent fields,
relationship fields and business methods to clients, effectively hiding lifecycle and
internal methods. The final component is the home interface, which provides for
the creation of new beans and the finding of existing beans. In addition to these
three mandatory components, support classes may also be provided.

In order to deploy an EJB, at least one additional component is required- an XML
document called the deployment descriptor describing the bean’s relationships.
By contrast, Mr Beans do not require a deployment descriptor because Mr
Architecture uses naming conventions in the bean classes to assist it in inferring
bean interrelationships. For example, a one-to-many relationship from an Order
bean to Orderltem beans can be expressed by including getOrderItems and
setOrderItems methods in the Order bean.

A remote interface may also be supplied as part of an EJB. Even when present, a
remote interface will not be implemented by Mr Architecture.

Mr Beans rarely exist in isolation, and so it is expected that many entities will be
developed at once to support a single functional aspect of an enterprise. The
approach this tutorial will take is to encourage the modelling of such entity
groupings and their interrelationships using a UML class diagram in a graphical
modelling tool. The classes on this diagram will first evolve into entity bean
classes, which will then immediately give rise to corresponding local interfaces.
At the same time, skeleton definitions of the home interfaces will be created, and
final tweaking of these will give rise to complete and deployable Mr Beans.

Responsibilities of the bean deployer

It is also expected that the bean deployer will use a modelling tool to assist in
deploying bean groups in the final application. In this case, the modelling tool
needs to be sufficiently powerful to support the creation of a relational schema
fragment corresponding to the class diagram. Tweaking this schema fragment to
include field widths should lead to the creation of two further components per
bean type which are needed before an application can be constructed from the
beans- tables supporting each bean and its related beans, and metadata used to
give presentation clues.

The final step is to have Mr Architecture create implementations of the modelled
components which interact with their respective tables and the metadata in the
complete application. This step is achieved entirely through the use of the Mr
Architecture DeploymentTool. The final deployed bean consists of:

MR. ARCHITECTURE Building a Database Application 7

* three components from the bean developer- the entity bean class, the local
interface and the home interface

* two components from the bean deployer- a database table and a metadata
file

* three further components generated by the DeploymentTool- an entity bean
implementation, an entity bean wrapper implementing client-managed
persistence and a home interface implementation

.* Modelling entities and relationships

The first step the bean developer should take in modelling the functional area of
an enterprise is to model candidate entities and relationships on a UML class
diagram. There are many good reasons for doing this, not the least of which is the
possibility of generating code directly from the modelling tool you choose. This
tutorial will use Rational Rose, and some scripts for this tool are provided in the
accompanying materials. You may use a different tool or modelling scheme if you
prefer, but you will need to either translate the diagram into components
manually or write suitable scripts for that tool to perform the transformations
discussed.

The example we have used so far is that of an ordering application. This is used
in the Enterprise Beans chapter of the J2EE Tutorial. However, because Mr Beans
are specifically entity beans with container-managed persistence, this tutorial will
follow the example application suggested in the chapter Container-Managed
Persistence Examples, namely RosterApp.

RosterApp automates the enterprise of managing teams of players in several
sporting leagues, such as a school board might need to arrange extra-cirricular
sporting events between schools in a particular region. The main entities we will
model will be Player, Team and League, but we may discover other minor entities
as we construct the model. We will not model an entity like School simply
because that would limit the applicability of our beans unnecessarily?. For
example, it is possible that an association of amateur sporting clubs not affiliated
with schools may want to use our beans in their application.

Let us make a first attempt at drawing the entities and their relationships on a
UML class diagram. In a UML class diagram, we model entities using classes
(shown as boxes) and relationships using associations (shown as solid lines with
only arrowhead and diamond adornments.) Associations can be unidirectional or
bidirectional, and directionality is shown by arrowheads. A unidirectional
association implies that class at the end without the arrowhead has visibility of
the class at the end with the arrow. A diamond indicates an aggregation.
Multiplicities, bounding the number of instances of each class which can
participate in a relationship, are shown using figures and ranges.

2 It is likely we could find a way to include School (or perhaps the more general Club) as
an optional bean which can cooperate with the rest of the beans in our model as and
when required. This is left as an exercise for the reader.

8 Modelling entities and relationships

League

+leaguelD: String
+name: String
+ageGroup: String
+sport: Sport

1

I

Team

+teamlD: String
+name: String
+suburb: String

0.

Player

+playerID: String
+name: String
+salary: float

Sport

+name: String
+description: String

Position

+name: String
+description: String

+position: Position

The diagram above also shows the persistent fields of each of the entities we are
modelling as UML attributes. You will notice we have also modelled classes for
Sport and Position. The dashed arrows indicate that we only see that these entities
are needed to make the details of League and Player complete, and we have not
yet decided whether these pairs are related, only that they depend on each other.
In particular, the choice to make Sport and Position entity beans is left open by
this approach. We may, for example, choose to collapse the fields name and
description in Sport into League, giving them names like sportName and
sportDescription.

Relationship fields are not normally shown on a UML diagram- they are implied
by the associations shown between classes. In fact, it is common for association
ends to be labelled with role names as well as multiplicity. We have not used this
feature of UML at this stage because Mr Architecture requires that we use the
class name (possibly in plural form) as the role name, so it is possible to generate
such annotations automatically using a script (as we shall shortly see.)

MR. ARCHITECTURE Building a Database Application 9

.* Modelling entities as Mr Beans

10

The first step in turning a vanilla UML class diagram with no stereotypes and
limited adornments into a diagram containing entity bean classes and their
relationships is to decide which classes are business entities. Mr Architecture
limits us in some ways but provides more options as well:

* The decision to model a class as an entity bean does not need to pay a great
deal of attention to inefficiencies of such an approach. Mr Beans carry very
little extra overhead beyond a pure object. In other words, you can get
many of the advantages of EJBs at very little cost.

[For this reason, we will choose to model Position as Sport as
business entities with mappings to lookup tables in the relational
schema. This descision might be different if we were using pure
EJBs. Before we can transform Position and Sport into entities, we
must add primary keys: we choose positionID and sportID,
with String values, in line with our other keys. It would be
equally valid to use numbers (int or long types), particularly if
we wanted to take advantage of database-generated sequences.

* Mr Architecture forces us to use a one-to-one mapping between entities and
relational database tables. This makes it exceedingly easy to see the
mapping between the class diagram and a relational schema, but also

encourages the modelling of some additional objects which would probably
be better off hidden.

[For this reason, we will be required to add an entity, TeamPlayer,
to model the many to many relationship between Team and
Player. This would only have been necessary in pure EJB if the
association between team and player had an associated entity
containing, say, a playerNumber field.

The next step is to add business methods.

* Relator methods are special abstract methods whose implementations are
supplied by the Mr Architecture DeploymentTool. For example, the League
bean has three relator methods:

 relateTeam adds a new Team object to the one-to-many
association between League and Team

» unrelateTeam removes a Team object from the same
association

« relateSport changes the Sport participating in the one-to-one
association between Team and Sport

» The getLeagues and getSports methods will allow a client application to
find out which Leagues and Sports a Player participates in. These methods
are not abstract, with implementations provided by the bean provider.

Modelling entities as Mr Beans

A typical bean applic-
ation would model sport
as a persistent field of
league. Mr Architecture
permits modelling as a
bean without great cost.

In EJB CMP, this table
would not be exposed,
but Mr Architecture
requires a one-to-one
mapping between tables
and beans.

A typical bean applic-
ation would model posit-
ion as a persistent field of
player. Mr Architecture
k permits modelling as a
bean without great cost.

Replace the fields
now modelled with
beans with foreign key
fields matching the prim-
’ ary key fields of the resp-
ective "lookup" beans. 0.*

The entities in this diagram have had their fields assigned private visibility, have
been made abstract, and have been assigned entity bean stereotype. You do not
need to do this manually- the script introduced in the next section will do these

tasks and more.

MR. ARCHITECTURE Building a Database Application 11

.* Modelling entities as EntityBean classes

12

The tasks we next need to perform to convert our modelled classes to entity beans
are rather automatic.

* Add getter and setter methods for each persistent field.

* Add getter (or retriever) and setter methods for each relationship field,
following the Mr Architecture naming conventions for such methods.

* Make fields have private visibility.

» Add EJB life-cycle methods, particularly ejbCreate and ejbPostCreate.
 Optionally, add a validate method.

* Make the entities abstract.

A script which does this and more for selected entities in a Rational Rose class
diagram is provided in the course materials. It is called CreateGetSet. The result of
running this script is shown on the next page.

The main change you will notice is that the beans have all been connected to
NullBean by a generalization relationship. The NullBean class is provided by Mr
Architecture and gives empty implementations of most EJB life-cycle methods,
except:

+ setEntityContext, which has an implementation that sets the protected
field context to reference the EntityContext object passed in as a
parameter.

+ unsetEntityContext, which has an implementation which sets context
to null.

* The methods ejbCreate and ejbPostCreate cannot be specified in
NullBean because their signatures depend on the primary key of the bean in
which they are defined (and NullBean has no primary key.)

It also provides additional functionality which works only under Mr Architecture:

» simpleValidate, a method which does a metadata based validation of the
persistent fields in the bean.

» containerChanged, a method which is called by the Mr Architecture
container to inform a bean of its assignment to a Container instance. The
method records a reference to the container in the protected field
container.

The other changes involve adding getter, setter, retriever, ejbCreate,
ejbPostCreate, and validate methods to each entity bean, and assigning role
names to the visible ends of assocaitions. The ejbCreate and gjbPostCreate
methods produced by the script have been fixed up for this diagram- the script
uses Object as a type placeholder because it cannot know the primary key type of
the beans. Additionally, the ejbCreate, ejpPostCreate and validate methods
need appropriate implementations- these are to be supplied by the bean provider.

Modelling entities as EntityBean classes

uonjedyyddy aseqejeq e buipjing FYN1LDILIHOAY AW

€l

These methods can

be created by a script

in your modelling tool,
such as CreateGetSet,
which is a Rational Rose
script provided in the
tutorial materials.

position

Extending from Null-
Bean allows you to

reuse commonly useful
implementations of EJB
lifecycle methods.

teamPlayers
0.*

o.* 1

teamPlayers

player

These methods can
be created by a script
,,,,,,,,,,,,,,,,,,,,,,,,,, Lo __________________|inyourmodellingtool,
such as CreateGetSet,
which is a Rational Rose
script provided in the
tutorial materials.

.* Mr Bean field accessor method summary

A field is either a persistent field, listed in the second section of a UML class box,
or a relationship field, one corresponding to each role name on associations
giving visibility to other classes.

* A persistent field is named for the database column it is mapped to in the
relational schema.

* A relationship field is named for the entity bean at the target end of the
relationship, with "s" added in the case of one-to-many relationships to form
the plural.3

It is conventional to name all fields with a lower-case letter for the first word or
sequence of initials, and upper-case letters for the first letter in each remaining
words or subsequent initials, with lower-case letters for the remainder of each
word. When the field is used as part of a method name, in an SQL query, orin a
Mr Architecture constrained field list, it is conventional to name the field with an
upper-case letter for the first letter in each word and for each initial, and lower-
case letters for the remainder of each word. Words like "ID" and "OK" are usually
treated as sequences of initials, so that names like sportID and idNumber
follow this convention.

Under EJB 2.0 CMP, all relationship getters and setters follow the same naming
convention:

 get<role-name> to obtain the related bean at the other end of a many-to-
one or one-to-one relationship (the return type is the local component
interface for the foreign bean), or to obtain a Collection* of related beans at
the other end of a one-to-many relationship (the Collection is composed of
instances of the local component interface for the foreign bean).

* set<role-name> to change the related bean at the other end of a many-to-
one or one-to-one relationship (the parameter type is the local component
interface for the foreign bean), or to submit a new Collection* of related
beans to populate the other end of a one-to-many relationship (the
Collection is composed of instances of the local component interface for the
foreign bean).

Because Mr Architecture does not use deployment descriptors, does not support
the modification of relationship collections, and also because Mr Architecture
allows all relationships defined by getters and setters to be automatically
populated as if they were aggregations, it introduces some additional method
types: retrievers and relators.

3 Mr Architecture does not (as of version 2.0) make exception for any words, but it may
in future make exception for words ending in "s". e.g. a many-to-many relationship
with visibility from Employee to Boss could be represented by a field named bosses.

4 Mr Architecture 2.0 also allows List, Set and Map to be used instead of Collection.
Where a Map is used, the mapping is from primary keys to instances of the local
component interfaces of related beans. EJB 2.0 only allows Collection and List.

14 Mr Bean field accessor method summary

» retrieve<role-name> is used where the relationship is not an aggregation,
to prevent Mr Architecture from collating too much data as part of a
findAll... method, and also where the relationship is not based on the
primary key of the local bean.

relate<role-name-singular> and unrelate<role-name-singular> modify a
relationship by including or excluding beans. How and when these changes
will be made persistent is described later in this tutorial.

The following table summarizes the method names used to represent associations

with various adornments:

1 or *5 (on primary key A)

1 or *5 (on foreign key A)

o1

(on foreign key B
named for
primary key A)

get<foreign-bean-name>
set<foreign-bean-name>
[relate<foreign-bean-name>]®

1

(on foreign key B
named for
primary key A)

retrieve<foreign-bean-name>
[relate<foreign-bean-name>]®

1
(to same bean on
primary key B)

getParent<bean-name>
[setParent<bean-name>]
(foreign key fields in A
prefixed with word "parent")

1
(on primary key B)

retrieve<foreign-bean-name>
[relate<foreign-bean-name>]®

O * get<foreign-bean-name>s

(on foreign key B set<foreign-bean-name>s
named for [relate<foreign-bean-name>]
primary key A) [unrelate<foreign-bean-name>]
O * getChild<bean-name>s

(to same bean
on foreign key
fields B)

setChild<bean-name>s
[relateChild<bean-name>]
[unrelateChild<bean-name>]
(foreign key fields in B
prefixed with word "parent")

*
(on foreign key B

named for
primary key A)

retrieve<foreign-bean-name>s
[relate<foreign-bean-name>]
[unrelate<foreign-bean-name>|

*

(on foreign key B)

retrieve<foreign-bean-name>s

> Mr Architecture does not allow many-to-many relationships to be modelled directly.
Model these as two one-to-many relationships as we have done for the many-to-many
Team to Player relationship in the tutorial example.

6 While there is no explicit unrelator method for a one-to-one or many-to-one
relationship, one can remove a bean from a such a relationship using
relate<foreign-bean-name>(null)

MR. ARCHITECTURE Building a Database Application 15

Retriever methods are written by the bean provider, while relators are generated
by the DeploymentTool. Relators are not included automatically by the
DeploymentTool to provide for relationships which can only be modified in
certain ways (e.g. UML addOnly) or not at all.

.* Creating home and local component interfaces

Each Mr Bean, modelled so far as an entity bean class alone, actually has three
components which need to be provided by the bean provider. The two
components we are missing are the local component interface and the home
interface.

* By in large, the local component interface arises pretty much directly from
the entity bean class. It simply lists all the methods in the entity bean class
except those dealing with entity bean life-cycle and implementation-
collectively these methods are referred to as the business methods.
(Business methods include getters and setters irrespective of the source of
their implementation, be it the bean developer or the DeploymentTool.)

O The purpose of the local component interface is to provide a
means through which clients can access the business methods of
an entity bean which coexists in the same virtual machine (VM).

* The home interface typically does not differ greatly from entity bean to
entity bean. It lists methods which allow new entity beans to be created
(creator methods), methods which allow existing beans to be looked-up
based on a primary key value, and methods which allow more general
search functions (finder methods). A home interface may also define some
business methods of its own- for each method named <home-method-
name> (not a creator or finder) in the home interface, a corresponding
method called ejpHome<home-method-name> is expected in the entity
bean class. A call to a business method in the home is mapped to a call to
the corresponding home method in a pooled entity bean’.

[0 The purpose of the home interface is to provide a home in which
all entity beans belonging to a particular class are housed. The
home interface is therefore implemented as a singleton with
respect to each Mr Architecture container. It is the point-of-call
for external clients wishing to obtain references to business
objects.

The local component interface can be generated entirely automatically, and a
good starting point for a home interface can be constructed in a similar way. A
script for Rational Rose which does the job given a selection of entity bean
classes is called GenerateEJB. This can be found in the accompanying materials.

After the home and local component interfaces have been constructed:

7" A pooled entity bean is an entity bean instance which has no assigned identity. i.e. it
has no primary key value.

16 Creating home and local component interfaces

» The create method should take a primary key value as its only parameter.
A creator method with no parameters can be used where the primary key
value is generated by a database sequence.

* Ensure that the findByPrimaryKey method (and findAl1ByPrimary-
Key method, if required) also takes a single parameter of the primary key
type. Here, as for create, the script assumes Object type.

The script also generates findWhereFieldsEqual and findAllWhereFields-
Equal methods. These are additional finders for which DeploymentTool provides
implementations. The result of a findWhereFieldsEqual is a Collection* of
beans of the type to which the home corresponds. These beans are obtained by
querying relational database storage with the constraint that only records where
the non-null parameters (named for fields in the bean) are equal (or LIKE?, in the
case of String parameters) to the corresponding fields in the bean. To search for
NULL values in the database, you will need to create a nullable object®, and
change the parameter type to accomodate such nullable objects.

The difference between find... and findAll... methods are the composition of the
beans returned and the overhead of the call. A find... method does not populate
bean relationships, so that the server (in the client container) or database (in the
server container) will need to be called upon as each of these relationships is
traversed. This is a lazy loading strategy, and is appropriate for most purposes.
However, if you know that you are going to be traversing most if not all of the
relationships in the returned beans, you can call upon a findAll... method,
whose implementation utilizes an eager loading strategy which will populate
bean relationships down to the level of retriever methods (which are used as a
short-circuit to prevent the findAll... returning half of the database).

One restriction Mr Architecture places on these methods is that the findWhere-
FieldsEqual method with the longest signature must list all the foreign key fields
that this bean is likely to be looked-up on. Additionally, a findAllWhereFields-
Equal method with the same signature is required if this bean is one which might
populate a relationship in a bean from a findAll... method in another home.

You can affect the order of the beans returned by the findWhereFieldsEqual
and findAllWhereFieldsEqual methods by including a static final variable
called defaultOrderFields in the home interface. This field should be an array
of ConstrainedFields of type Constrained_Sort, named for fields in beans,
where the first ConstrainedFields in the array are most important to the sort order.

8 LIKE is an SQL operator which does a Knuth Soundex comparison of textual fields
with constrained text. Additionally, the characters underscore ("_") and percent ("%")
are single and multiple character wildcards.

Java type Nullable type Examples

int, Integer | Nullablelnteger | new NullableInteger(null), new NullableInteger(1l)

long, Long | NullableLong new NullableLong(maull), new NullableLong(1l<<32)
String NullableString | mew NullableString(mull), new NullableString(" foobar")
Date NullableDate new NullableDate(null), new NullableDate(mew Date())

MR. ARCHITECTURE Building a Database Application 17

Alternatively, the DeploymentTool will provide implementations for methods
called find[All]In<field-name>0rder which return beans ordered on a
particular field, <field-name>, which takes precedence over the
defaultOrderFields.

Mr Bean component summary

For each bean in our model we now have three components.

Bean name Components (bean class, local component interface, home interface)
MrLeague League, LeagueObject, LeagueHome

MrTeam Team, TeamObject, TeamHome

MrTeamPlayer TeamPlayer, TeamPlayerObject, TeamPlayerHome

MrPlayer Player, PlayerObject, PlayerHome

MrSport Sport, SportObject, SportHome

MrPosition Position, PositionObject, PositionHome

The naming convention used by Mr Architecture for the various components is
not the same as that recommended for EJB.

Component Mr Architecture name EJB name syntax
syntax

Enterprise bean Mr<name> <name>EJB

Bean class subcomponent <name> <name>Bean

Local interface subcomponent <name>0ODbject Local<name>

Local home interface <name>Home Local<name>Home

subcomponent

.* Generating skeletal components

18

As we have now modelled all the components which the bean developer must
supply, it is time to produce some code. Rational Rose, with the assitance of the
scripts we have already seen, is capable of taking our model and generating
skeleton code which requires very little modification to make it work.

The tasks that Rose automates for us at this step are:

» Each abstract class (with an italicized name) is converted to a Java source
file which contains a single abstract class declaration.

» Each abstract method (with an italicized name) is converted to a
Java abstract method with no body.

» Each concrete method is converted to a Java method with an
empty body which we need to provide.

* Each interface is converted to a Java source file which contains a single
interface declaration. Methods are transferred into the interface.

Mr Bean component summary

Some mundane tasks which may need to be done manually:

* If the model was not in an appropriately named subpackage of the model, a
package directive may need to be added.

 import directives may need to be added if classes from the javax.ejb,
javax.transaction or au.gov.tas.dpiwe.mr.bean were not present in the
model from which the code was generated.

* Persistent fields should be removed from the entity bean class. These will be
supplied by DeploymentTool. While we could have removed these from the
model, this makes the model less clear.

[0 Beware of reverse engineering entity bean classes which have
had their persistent fields removed, as this will remove the fields
from the model. If you merely comment out the persistent fields,
you will able to put them back in order to reverse engineer the
class correctly.

 abstract modifiers may need to be added, and bodies may need to
replaced with semi-colons, for abstract methods.

» throws clauses may need to be added to methods.'°
.* Implementing business methods

Once all the components for a bean have been generated, the final step for the
bean developer is the implementation of business methods. The only business
methods we have defined in this example that aren’t implemented by the
DeploymentTool are retriever methods and non-abstract getter methods.

A typical implementation of a retriever method involves the use of a relationship

field defined in the abstract bean class, which is set to null initially:

* If the relationship is not defined, perhaps due to the absence of a foreign
key, return a null value (in the case of a one-to-one or many-to-one
relationship) or the empty collection (in the case of a one-to-many
relationship).

e.g. if (sportID==null) return null;

* If the relationship field has already been populated, return the content.
e.g. if (sport!=null) return sport;

* Obtain a reference to the foreign bean home via the Mr Architecture
container. (The next section describes home interfaces in more detail.)
e.g. SportHome home=container.getHomeForEntityBean(

new ThinSportQ
J;

19This is not necessary if you use the scripts provided in the course materials.

MR. ARCHITECTURE Building a Database Application

19

* Lookup the foreign bean(s) and store them in the relationship field. Do not
use a findAll... method, as this retriver method (particularly in the case of
an association which is not an aggregation) may be the only thing
preventing a findAll... method from returning half of the database.

e.g. lookup the Sport with a primary key matching the foreign key sportID.
i.e. sport=home.findByPrimaryKey(sportID);"’

 Return the value of the relationship field.
e.g. return sport;

Instead of retriever methods, a bean provider may define a non-abstract getter
method. However, the advantage of retriever methods is that they are called
automatically by the ClientContainer upon receiving one or more beans as the
result of a findAll... method. These calls happen as part of a batch, so that many
relationships can be populated during a single network transaction. If this is not
the behaviour you want, you must use a non-abstract getter method.

The getLeagues and getSports business methods defined in Player are
examples of such non-abstract getter methods. The implementation of these
methods will take a similar form to retriever methods except that they will not
record the result of the finder method call in a relationship field.

Deploying beans for use in a client application

For the purpose of this section, we assume the client application is using an
implementation of MrContainerFactory to construct the Mr Architecture
containers. This approach allows us to use the DeploymentTool and not code our
own tool which makes calls to DeploymentContainer in order to deploy beans.

Each Mr Bean may be packaged in an Mr Jar file, just as an EJB is packaged in an
EJB jar file. However, in Mr Architecture it is more common to provide the source
files to the bean deployer so they can compile them along with the rest of their
project.

The differences between a Mr Jar file and an EJB Jar file are:

* A Mr Bean is specific to the Mr Architecture containers.
* A Mr Jar file contains no deployment descriptor.
* A Mr Jar file may contain a prototype metadata CSV file

If no prototype metadata is provided, then the bean deployer will create one from
scratch if they are planning to use the MetaData interface provided by Mr
Architecture for things like validation. The metadata CSV file is stored in the same
directory as the bean’s compiled classes and contains lines specifying the
following information:

TException handling is not shown. In particular, FinderException would need to be
caught, and handled by returning the null value. In the case of a one-to-many
relationship retriever impementation, it would also be appropriate to rethrow an
exception from a finder method by wrapping it in an EJBException.

20

Deploying beans for use in a client application

<field-name>,<database-type-name>,<width>[,[<precision>]|,
[<human-readable-name>][,[<upper-case-flag>][, [<table-heading>]111]

If the bean deployer has access to the Rose model of her schema, she can
produce the first three or four fields automatically using the MetaGen script. If she
does not have the Rose model of her schema, but has the Rose object model, as
we do from our earlier modelling, she can use this to generate a schema which
she can then mark-up with database types and widths.

This brings us to the next task a bean developer must carry out before a Mr Bean
can be deployed in a client application- the creation of a schema fragment. As we
have suggested, Rose allows us to create the schema representation direct from
the object model. The only manual labour required is marking database types and
widths, and primary and foreign key constraints. Rose can use the modelled
schema to produce a DDL script, or it can connect directly to a database and
execute the necessary statements.

Once the schema and metadata exist, a bean can be deployed. This is achieved
by adding a line to the populateDeploymentContainer method of the
application’s MrContainerFactory implementation, recompiling this class and
then running DeploymentTool.

The line for our League bean might look like:

container.addType(
League.class,
League.class.getMethod(
"getLeaguelD",
new Object[] { String.class }
),
League.class.getMethod(
"setLeaguelD",
new Object[] { String.class }
),
LeagueObject.class,
LeagueHome.class
J;
The deployed bean consists of three further components, which together
constituate a bean type which can be added to Mr Architecture client and server
containers alike. For this we add another line to the applications MrContainer-
Factory, this time the populateContainer method, and recompile this along
with the source files generated by DeploymentTool:

MR. ARCHITECTURE Building a Database Application 21

22

container.addType(
ThinlLeague.class,
ThinT.eague.class.getMethod(
"getLeaguelD",
new Object[] { String.class }
Ds
Thinl.eague.class.getMethod(
"setLeaguelD",
new Object[] { String.class }
Ds
MrLeague.class,
MrLeagueHome.class
)3

Writing a client application

As we indicated in the last section, the best approach for constructing a Mr
Architecture application is to base it around a MrContainerFactory
implementation.

One of the first things your client application will do is instantiate an appropriate
Mr Architecture Container instance to house the beans which will be
manipulated during its execution. As we have seen, instantiating a Container not
only involves constructing it, but populating it with the bean types it requires,
which is why Mr Architecture encourages the use the factory method design
pattern.

For our example, we will create a client which uses the ServerContainer directly.
Normally a Mr Architecture client, as its name might suggest, uses a
ClientContainer to indirectly connect to a remote ServerContainer via a
CommandServlet instance. The way in which you use each type of container is
identical once it is constructed.

+ Container container=createServerContainer(
new MrDatabase("jdbc:cloudscape:localhost",""," ")
Js
» Container container=createClientContainer(
new URL("http://localhost:8080/mrroster/command/")
Js
One issue which constructing an application in this fashion avoids is the need for
user authentication, because it is the CommandServlets which provide this
service. If we were a ClientContainer connecting via a CommandServlet, we
would need to commit a LoginEntityBean instance and SessionEntityBean
instance to persistent storage as part of our first transaction before we could do
any operations. The creation and storage of a SessionEntityBean establishes a
session. The creation and storage of a LoginEntityBean containing a valid
username and password then authenticates the user for this session.

Writing a client application

During the execution of our application we will perform transactions involving
beans. Here are some examples of some transactions we may perform:

* e.g. Allow the user to start a new league.

* Obtain the MrLeagueHome.

i.e. LeagueHome leagueHome=
container.getHomeForEntityBean(mew ThinlLeague());

* Once the user has entered a leaguelD, create a new MrlLeague
for this ID. Display a dialogue box and clear the field if the ID
clashes with one that already exists.

i.e. try {
leagueHome.create(leaguelD);

} catch (DuplicateKeyException failure) {
// Display a dialogue box

}

* Allow the user to type the name and ageGroup, and store it in
the bean.

i.e. if (event.getSourceO==nameBox) {
league.setName(nameBox.getText());

} else if (event.getSourceO==ageGroupBox) {
league.setAgeGroup(ageGroupBox.getText());

} else . . .

* Allow the user to enter a sport using a combo box populated with
all MrSport beans.

* Obtain the MrSportHome.
i.e. SportHome sportHome=
container.getHomeForEntityBean(

new ThinSportQ
);

+ Call findWhereFieldsEqual to obtain all MrSports.

i.e. sports=sportHome.findWhereFieldsEqualQ;

MR. ARCHITECTURE Building a Database Application 23

24

« If the user clicks OK, call store; Cancel, call remove.

i.e. if (event.getSource(O==0kButton) {
league.store();

} else if (event.getSource(O==cancelButton) {
league.removeQ);

* e.g. Allow the user to remove a team.

i.e. TeamHome teamHome=container.getHomeForEntityBean(
new ThinTeamQ
J;
TeamObject team=teamHome.findAlIByPrimaryKey(teamID);
Iterator teamPlayers=player.getTeamPlayers().iteratorQ;
container.beginQ;
while (teamPlayers.hasNextQ) {
TeamPlayerObject teamPlayer=
(TeamPlayerObject)teamPlayers.next();
Collection relatedTeamPlayers=
teamPlayer.retrievePlayer().retrieveTeamPlayersQ;
if (relatedTeamPlayers.sizeQ==1) {
relatedTeamPlayers.iterator().next().removeQ);
}
team.unrelateTeamPlayer(teamPlayer);
}
team.removeUnrelatedQ;
team.removeQ;
container.commitQ;

* e.g. Allow the user to remove a player from all teams.

i.e. PlayerHome playerHome=container.getHomeForEntityBean(
new ThinPlayer(

J;

PlayerObject player=playerHome.findAllIByPrimaryKey(playerID);

Iterator teamPlayers=player.retrieveTeamPlayers(.iteratorQ;

container.beginQ;

while (teamPlayers.hasNextQ) {
((TeamPlayerObject)teamPlayers.next()).removeQ;

}

player.removeQ;

container.commitQ;

Writing a client application

* e.g. Display a table linking players and their sports.

i.e. class PlayerSportTableModel
extends javax.swing.table.AbstractTableModel

{

List players=new Vector(Q); // The players (may be dups.)
List sports=new Vector(); // The corresponding sports

Pla;yerSportTableModel(Container container) {
Iterator playersAndSports=
container.selectSiameseBeanObjects(

"select Player.*, Sport.*

from Player, TeamPlayer, Team,

League, Sport where

TeamPlayer.PlayerID=Player.PlayerID and

Team.TeamID=TeamPlayer.TeamID and

League.LeaguelD=Team.LeaguelD and

Sport.SportID=League.SportID"

).iteratorQ;
while (playersAndSports.hasNextQ) {

Iterator playerAndSport= (
(SiameseBeanObject)
playersAndSports.nextQ

).8etBeanObjects.iteratorQ;

players.add(
(PlayerObject)playerAndSport.next

);

sports.add(
(SportObject)playerAndSport.nextO

);

MR. ARCHITECTURE Building a Database Application

25

