A New Architecture

Evolution of DPIWE e-business applications
Kade Hansson

Overview

In the last five years, DPIWE has developed a number of web-based business
applications. They range from systems which are almost completely accessible to
the public to those which are used entirely by people within the department.

The systems selected for examination in this discussion paper are mainly chosen
for the unique characteristics of their deployment mode and underlying
technologies. They are:

gl ~LISI.

Land Information System Tasmania (LIST)

* Publicly accessible system accessible from modern web browsers
with some dependencies on proprietary technologies. The LIST is
a critical portal for DPIWE’s Land Services division.

« Initially envisioned as a prototype system, this system is still in
wide use today with no immediate plans of replacement.

* Based on a variety of technologies, but primarily Oracle PL/SQL.
» Code is mainly ad hoc and there is little possibility of reuse.

|

Laboratory Information Management System (LIMS)

* Internal business system with a sound internal design, but
suffering from a mismatch between product and client needs.
Dependent on Internet Explorer with Java and JavaScript enabled.

* While the architectural design is sound, the implementation is
largely quite poor and highly inefficient. In particular, LIMS
would benefit from application of the MVC' design pattern.

* An intricate mosaic of technologies which is hard to develop and
maintain, placing strain on organisaional expertise as a result.
Includes a large number of Java servlets, a modest number of Java
applets and JavaScript scripting on the client side.

* LIMS uses Java Database Connectivity (JDBC) directly without
any architectural abstraction, and the complexity of the code
reflects this. Documentation is virtually non-existent.

! Model View Controller. A common Java 2 Enterprise Edition (J2EE) design pattern
where data and business logic are separated from presentation form.

A New Architecture- Evolution of DPIWE e-business applications

- sTARS

Service Tasmania Automated Receipting System (STARS)

* Internal business system dependent on a Java technology enabled
web browser. STARS meets the clients’ needs quite well.

* Built around a successful proprietary object-oriented/relational
hybrid architecture produced by ALife Consulting called JALife.
Newer versions of the source code for this architecture are not
open to inspection or development from DPIWE’s perspective,
except in conjunction with STARS.

 Based on JDBC technology, but predates J2EE. Uses an applet on
the client to achieve the maximum potential for delivering
usability and productivity for the clients.

 Code is of a fairly high standard, but is quite complex, not very
well documented, and therefore difficult to maintain. Reuse is
possible, but with limitations due to the JALife license.

* SurCoM

Survey Control Marks Database (SurCoM)

* Internal business system with a clever tiered approach to
database access. Runs on all browsers with very few
dependencies on proprietary technologies. SurCoM is reasonably
successful, and is going to be released to the Australian Antarctic
Division as the basis of their marks database.

* LIMS in a bottle, but the tiered approach to database access is
almost J2EE EJB BMP?, yet SurCoM predates this technology.
SurCoM benefits from the application of the MVC design pattern.

 Uses the same JDBC engine as LIMS, but this has been branched
in SurCoM and is not shared. SurCoM uses JSPs3 for content
delivery, but ignores some of the newer and more advanced
features, essentially resulting in what are really "ASPs in Java."

* Code is of a modest standard, but is very poorly documented in
places. In particular the JSPs are almost unreadable, and fail to
separate content from semantics and presentation elements (save
for the MVC structure, which lifts SurCoM to the level of being
almost manageable.)

2 Enterprise Java Beans with Bean Managed Persistence. An older J2EE development
model where business entities are mapped onto objects which must provide their own
database access code. Typically there is one bean per table in the database.

3 Java Server Pages. A J2EE technology for producing mark-up language content on the
server side. Similar to Microsoft’s Active Server Pages (ASPs), but with better facilities
for separating the concerns of software developer and layout designer.

2 Overview

- Land Titles System
Tasmanian Folio and Valuation Information System (Tasfol/Vistas)

* Like STARS, Tasfol and Vistas are internal business systems
dependent on a Java technology enabled web browser. Vistas
may allow WAP access via the (yet to be developed) Ms
Architecture extension. Tasfol/Vistas is still under development,
but is widely regarded as DPIWE'’s best web application to date
in terms of client satisfaction.

* Uses the object-oriented/relational architecture Mr Architecture
which is slated for an open source release. Developed internally
by Kade Hansson, a DPIWE employee, the emphasis in Mr
Architecture is on the an object-oriented approach which can
leverage modern technologies in a lightweight and reusable
framework that is efficient in terms of both development and
execution.

* Mr Architecture is very close to J2EE EJB CMP#, and future
evolution to Dr Architecture will likely see a complete J2EE
compliant EJB container produced with the possibility for
migration of Tasfol/Vistas with some effort.

* Code is of a high quality, and well documented. The code
supporting the architecture is highly complex when compared
with other DPIWE systems (except JALife perhaps), but the good
level of documentation mitigates maintenance difficulties
somewhat. Some of the Tasfol business logic is bound to Ul
components due to Mr Architecture providing limited support for
business transactions which cross bean boundaries.

Even from this brief analysis, it is clear where the weak points lie. And as a
production system can only be as good as the architecture which supports it, and
development methodology which created it, we must therefore reexamine these
two areas before we embark on new projects or we are doomed to repeat the
same mistakes.

It is worth pointing out that these analyses can only be made in hindsight. It is
extremely difficult to see, and even more diffciult to change, a development
architecture or methodology that is failing a current project. The criticisms above
are made only to allow DPIWE to move forward, and do not reflect on the
talented people who produced the systems. Without their efforts, there would be
no basis for improvement, as the CIT division would have been shut down long
ago.

4 Enterprise Java Beans with Container Managed Persistence. A recent advance in J2EE
technology which allows database access code to be automatically generated by the
supporting container implementation. The developer provides business objects which
map onto database tables in a way declared by deployment descriptors.

A New Architecture- Evolution of DPIWE e-business applications

One positive that is worth noting is that all of these projects resulted in a working
production system with a level of resources that would be considered impossibly
low in most organisations. This fact alone is a tribute to all developers, past and
present, who have had a hand in creating the present range of DPIWE business
information systems.

The Current Architectures

We will ignore the LIST’s architecture, as it is a production system only by
accident. It is a successful experiment in producing a web application, but its
development owes more to the talented people that worked on it than the mainly
ad hoc architecture which supports it.

LIMS and STARS were almost parallel developments, with LIMS the youngest and
least successful of the two:

 LIMS’ architecture abstracts JDBC into persistent RowObjects containing
data objects which encapsulate the data fields in each row, but nothing
more. There is one object type for each table (like EJB). There is also one
servlet for each object type which serves RowObjects and accepts data
objects for insertion or update. All of the presentation layer is coded by
hand, with one servlet per possible client request. Database access code
(save complex queries) is produced automatically by the GeoCASE tool.

v
The LIMS Architecture
Clients Network Transport Server JDBC Database
id=22
name=MC% ‘ ‘
@ Requests ‘ ‘ e
UPDATE
‘ ‘ DELETE
g Queries
@ ﬁ RowObjects Oracle
Applets| /_ges | | ResultSets
<head>
Serviets
Internet Explorers sl
Pages

» The STARS architecture, JALife, provides a minimal abstraction layer for
JDBC with the goal of allowing result sets to travel from the client to server.
Unlike LIMS, no attempt is made to translate business data into object
representations, which simplifies the implementation complexity while
retaining a level of interface complexity comparable JDBC itself. This is
offset by the provision of excellent reusable facilities for data presentation,
and a thorough use of object-oriented inheritance throughout.

4 The Current Architectures

Apart from the dichotomy of presentation capabilies, these two architectures are
comparable is terms of abstraction level. In both cases, very little effort is put into
hiding the database implementation behind a facade of any kind. Both
architectures would benefit from such a facade, allowing database concepts like
cursors to take a back seat to the important issues of business logic. Again, if we
ignore presentation capabilities, LIMS’ architecture is clearly the preferred
candidate for further evolution, being much less tied to JDBC and the underlying
database, and taking an object-oriented approach, in what is an object-oriented
language after all. (In an ideal world we would like to steal the presentation
capabilities from JALife as well, but these are tightly coupled and there are some
licensing issues.)

The SurCoM architecture is such an evolution. Much more object-oriented than
either LIMS or STARS, SurCoM'’s data is abstracted into JavaBeans® which are
almost EJBs with Bean Managed Persistence (BMP). Beans begin their lifecycle in
their Handler (analogous to the EJB home), arising through queries made through
their Manager. Traversing bean relationships in SurCoM is as simple as invoking
find methods (analogous to EJB relationship getters) and setting foreign keys is as
simple as invoking describe methods (analogous to EJB relationship setters). The
cost is, without the automation of LIMS, all queries must be written by hand, and
all beans are populated without the assistance of reflection- a messy
implementation to go with the clean interface.

v
The SurCoM Architecture
Clients Network Transport Server JDBC Database
@ ‘Q & " id=22 . f’ﬁgﬁ?
: : name=MC% ~ UPDATE
ﬂ:—-\ ‘ R Se VIefS . DELE'.'['E
v -rﬁ:? g {\ equests Queries
@ ﬁ% i% setm®™> Gontrol JSPs~
Amaya sl Oracle
> 24 e an
e @ Pages JavaBeans ResultSets
h View JSPs
Browsers

SurCoM also uses RowObject, but to no effect, because collections of beans do
not have to be serialized- all activity occurs on the server through the action of
Java Server Pages (JSPs) and a handful of servlets.

> JavaBeans were an early addition to the Java 1.1 Development Kit, existing long before
Java 2 separated Java into Micro Edition (J2ME), Standard Edition (J2SE) and Enterprise
Edition (J2EE). JavaBeans are heterogeneous Java objects which can be interrogated
dynamically at run time and made persistent in binary files. JavaBeans are mainly used
to provide user interface components, as EJBs are now used in enterprise frameworks.

A New Architecture- Evolution of DPIWE e-business applications 5

In terms of code, the next step up the evolutionary ladder, Mr Architecture, shares
only the JDBC abstraction paraphenalia underneath RowObject in common with
SurCoM, albeit moved into a new package. However, its high concept owes
much to pitfalls of SurCoM. Mr Architecture gets much closer to EJB, adopting
most of the same structures and naming conventions as needed to support entity
beans with Container Managed Persistence (CMP). CMP was chosen to eliminate
the maintenance problem facing SurCoM’s developers- in Mr Architecture, all
code to query the database, unless taking advantage of advanced relational
facilities like table joins, is automatically generated. The time saving of this
advance alone is worth the price of admission, but Mr Architecture goes much
further, providing a seamless object-oriented facade to the relational database.

v
Mr Architecture
Clients Object Transport Server JDBC Database
Layer
—
SELECT
) mer
DELETE
Commands Queries
MrBeans MrBeans
... MrDatabase
MrBeanHomes MrBeanHomes
Responses ResultSets
CommandServiet—————
ClientContainers ServerContainer

But even Mr Architecture lacks the elusive presentation layer. This should be set
straight in the next evolution, an incremental extension called Ms Architecture,
with the power not only to increase the simplicity of future Mr Architecture
developments, but also in support of non-Mr applications like SurCoM. Also, to
bridge the gap between Mr Architecture and full EJB, Dr Architecture is proposed
as a more complete replacement for Mr Architecture. Among its more notable
features, Dr Architecture promises to hide transaction management better, while
still offering the advanced and highly-efficient bean transport facilities of its
predecessor at the implementation level.

What Should the New Architectures Be?

Looking at the implementation of all DPIWE’s web-based business applications,
there seems to be a tendancy to favour proprietary or in-house solutions for
development. Such decisions should not be taken lightly, or at least should be
well justified. One justification for deviation on early projects may have been that
the technologies required just did not exist. However, today, there is an
increasing wealth of both standards and standards-compliant implementations
which DPIWE should look to adopt.

6 What Should the New Architectures Be?

In light of this, the most important step for future development in DPIWE to take
involves the adoption of most, if not all, elements of the current J2EE standard.
The mistake would be, as has occurred and continues to occur in other
organisations with similar technologies like Microsoft’s .Net, to force the adoption
from the top-down in a way which would sweep away everything which has
gone before virtually overnight. The most important consideration in maintaining
a high quality information infrastructure is not to adopt new and emerging
standards immediately, but to evolve into them. While a new technology may be
inserted almost at the flick of a switch, the people which must understand and
support those technologies cannot come out of thin air.

Dr Architecture is a proposed stepping stone into at least one other part of J2EE
besides servlets and JSPs- that is Enterprise Java Beans (EJB). Mr Architecture has
taken the first step from wholly in-house or proprietary solutions such as those
found in STARS, LIMS and SurCoM by attempting to adopt some, but not all, of
the EJB 2.0 specification. Dr Architecture must remove the dependencies which
exist on a proprietary EJB container and database implementation, or at least
remove enough of them to make the final step out of proprietary and in-house
architectures as painless as possible.

We can also observe that all the current DPIWE web application architectures
since the LIST are three tier:

 Database layer

* Business abstraction layer (LIMS, SurCoM, Tasfol/Vistas) or presentation
abstraction layer (STARS)

* Presentation layer

It is clear that the missing element from all but STARS is a presentation abstraction
layer. Even STARS could benefit from an enhanced presentation abstraction layer,
as it relies on heavyweight clients. STARS would also benefit from a better
defined business abstraction layer.

The Ms Architecture Extension is a proposed solution to the presentation
abstraction layer question. It is not an entirely new architecture, nor would it be
bound to Mr Architecture applications (though it would likely share some code
from the au.gov.tas.dpiwe.mr package.) It could be used in any application which
uses object representations of data, from LIMS to SurCoM to Tasfol/Vistas to
future applications based on Dr Architecture, J2EE and beyond.

Improving the Development Methodology- Using Tools Better

Mr Architecture was not just a web application support architecture, and this is
very important to note. Mr Architecture is also a methodology for transforming
business application concept to business application implementation. It leverages
an object model developed in a modelling tool like Rational Rose, a tool which
DPIWE had already licensed, to rapidly deploy and synchronize both code and
database components with minimal translation effort.

A New Architecture- Evolution of DPIWE e-business applications 7

This automatic synchronization of electronic model and code is an emerging
trend in the development of all kinds of software. It is now supported within
many IDEs- Rational just happened to be the pioneer in the area. The savings in
development cost and increased level of maintainability of resulting applications
by future developers cannot be overstated- the potential for greater efficiency is
simply enormous.

LIMS was the first attempt by DPIWE to use such integrated modelling. The
GeoCASE tool provides some support for generating code templates, but it lacks
the ability to synchronize once the code has been developed further. This ends
up being a serious impediment to development. The idiosyncrasies of the
GeoCASE tool and the limited expertise of the current set of developers in using
the tool also make it difficult to gain advantage from the electronic model. Latter
stages in SurCoM’s development were impaired by the combination of reliance
on GeoCASE and new developers not understanding the tool or relationship
between model, database and code.

This highlights the need for integration between the coding environment used by
developers, and the design environment used by analysts (who, in DPIWE, are
often the same people as those that play the developer role.) Tasfol/Vistas used
Rational Rose extensively in the early to middle stages, but the perceived
difficulty and lack of benefit from using it in the later stages mean that the
electronic model was largely abandoned. It is perhaps too early to take a post-
mortem of this phenomenon, but it seems that the lack of connection between the
toolset developers used every day and the Rational Rose tool was the main
problem.

It is interesting to note that this time it is not the tool’s fault. While some of the
developers have a love-hate relationship with Rational Rose, most of their
criticisms can be dismissed as criticism of how Rose fitted into the development
process and not of the tool itself.

* One, or at most two machines, are generally available to a project team to
run Rational Rose. DPIWE has node-locked licenses for reasons of licensing
cost, and this severely limits the ability of members of the development
team to readily switch to using the appropriate tool for the role they are
playing- developer or analyst- which, in DPIWE, can change from hour to
hour.

» The machines used to run Rose were severely underpowered, running
inferior operating systems and having limited processing and memory
capacity. For better or worse, Rose is resource hungry, and such restrictions
prevent Rose from performing at a reasonable speed.

* The model was never separated into petals, as advocated by the Rose
consultant early in development, in order to facilitate concurrent
development of the model by multiple developers. Part of the reason for this
may have been the resource bottleneck of only being able to use one or two
machines away from the developers normal workstation- what point, then,
is there for facilitating concurrent development?

Improving the Development Methodology- Using Tools Better

* The model was never version controlled, and it was not maintained in
synchrony with the developed code. One reason for the latter may have
been a distrust of the tool by the developers. This distrust was most likely
unwarranted, and just an excuse.

DPIWE has a third node-locked Rose license, currently utilized on the
methodology architect’s machine. But even if another dedicated Rose machine
were established, and there was a small improvement in Rose’s utility within the
organisation, it may severely impair the architects ability to assist other
developers in improving the Rose-assisted process. Additionally, the demands on
Rose are increasing due to a number of small projects now adopting Mr
Architecture. To continue to use a modelling tool under such a restrictive
licensing arrangement is untenable. If DPIWE cannot afford at least three floating
licenses for Rose, then it should look to adopt similar tools available from other
vendors. Oracle JDeveloper claims to have an integrated modelling capacity (in
the areas of UML for which Rose is currently used in DPIWE), for example, and
this possibility and others should be examined.

Any modelling solution should be free to use by any developer on their own
workstation at any time with minimal contention, otherwise it will not be wholly
embraced. It should integrate with their development environment- Rose is ideal
in this respect because it does not mandate a particular environment and the
latest version can interoperate with most of the more popular ones.

This leads to another important point- DPIWE allows developers to choose both
the operating system and development environment software they use for
development. This greatly increases the productivity of the individual developers,
because they are able to use systems which they perceive as most effective in
facilitating their daily tasks. However, Rose is a mandated tool, and additionally
the hardware and operating system is mandated. A person with preference for
another operating system faces the double impediment of using a development
tool, Rose, with which they may not be comfortable, and an unfamilar operating
system as well. While forcing a developer within a project to standardize on a
particular modelling tool may be reasonable, forcing use of a particular operating
system or hardware is not. Rose has versions for the some of the other preferred
operating systems of DPIWE developers, and it may be worthwhile licensing
these, or it may be better to choose a different cross-platform modelling tool.

Migrating from Rose to another modelling tool would have a slight cost for Mr
Architecture- the scripts currently used to transform an object model into Mr
Beans would have to be adapted to any new tool. These scripts are not a
requirement of Mr Architecture, however, so migration should not be dismissed
on this basis alone.

A New Architecture- Evolution of DPIWE e-business applications 9

The Trouble with Mr Bean

10

Mr Architecture is not a bad first attempt at implementing a subset of EJB
functionality. Unfortunately, it subsets just a little to much to allow applications
built using Mr Beans to be immediately migrated to a J2EE EJB container. If Mr
Architecture completely implemented even EJBs with CMP and local interfaces,
the task would be much easier. But it does not.

v

Local

N N
Remote | s/\ DN

S,
Q[i' Qes e@s'
es Oepn 208
Q
h)

[] Supported by Mr Architecture
[] InEJB, but not Mr Architecture

Some of the missing elements are quite deliberately missing- deployment
descriptors, for example- in order to ease the burden for developers. But other
elements are missing for the sake of making the implementation simpler- Java
naming and the semantics of EJB transactions, to name just two.

Clearly both those missing elements which are deliberately missing and those
missing just to make implementation easier must be installed into future versions
of Mr Architecture if DPIWE is to evolve into using other J2EE implementations.
The issue is not so much about extending Mr Architecture, but making
applications written in the absence of J2EE features compliant enough to run
without Mr Architecture or its future incarnations. To this end, all the Mr Beans
currently written and written in future must be translatable into standard entity
beans.

It is envisaged that translation will be possible using an automated tool which
reads the source files for existing Mr Bean components and produces standard
entity bean component source files and deployment descriptors for use in
containers other than those of Mr Architecture, such as Dr Architecture. The
greatest difficulty will be making applications independent of Mr Architecture’s
transport layer, and conventions arising out of some of the idiosyncrasies arising
from the use of that transport layer, such as invokeOnServer, as well as in
security and transaction management, such as deepClone and deeperClone.
Automated tools may be able to help here as well, but at least some of the task
will need human intelligence.

The Trouble with Mr Bean

Becoming Standards Compliant- Dr Architecture

One of the impediments to moving into Oracle 9iAS, IBM iPlanet, Sun ONE or
JBoss overnight, besides the new support expertise which would be required of
the server team, would be the not insignificant burden on developers to learn a
great number of new and emerging technologies while managing to avoid the
pitfalls of bending to one implementor’s extensions or idiosyncrasies. By
implementing an in-house solution, we extend the time allowable for developers
to familiarize themselves with J2EE’s specification and for the server team to
become more adept at providing the support for the new weightier abstraction
layer and recommending levels of hardware required to maintain and increase
the efficiency of e-business processes.

Dr Architecture is not about reinventing the wheel. The whole point of standards
like J2EE is to avoid vendor lock-in and permit a wide choice of implementors. Dr
Architecture is about standardizing the development platform of DPIWE to one
which can be migrated to a new vendor. Currently this is not possible or would
be prohibitively difficult. While we could run our old applications on a different
J2EE-compliant servlet engine (like Apache Tomcat, as is currently used for newer
applications like SurCoM and Tasfol/Vistas) with minimal difficulty, each
application would still have to be maintained very differently with respect to their
widely divergent architectures. Our aim instead should be to unify the
architectures one by one, starting with the least difficult and moving progressively
to the more and more divergent, ending with the LIST.

There would be a not insignificant difficulty converting a Mr Architecture
application into a Dr Architecture one. The pain for gain required under SurCoM
would be proportionately higher, as the architecture it uses is more devolved
from J2EE. Converting LIMS would be a significant project. STARS would require
an even greater effort. A new J2EE LIST would not salvage a line of code, and
would be a functional rewrite requiring time and resources equivalent to the
development of the original application. But the benefits to developers would
allow them to maintain applications much more easily, the unification of the
architecture would greatly reduce the support burden of the server team, and
would greatly reduce DPIWE’s current shameful dependence on in-house experts
familiar with the innumerable idiosyncrasies of the code in each application. The
end result for clients would be a direct improvement in the time needed to make
business changes both large and small.

Another reason for Dr Architecture is to prove that easing the developers burden
does not have to mean an increase in support levels demanded from the server
team, nor that unreasonable demands are placed on hardware infrastructure. Dr
Architecture would aim to be lightweight and efficient, just like its predecessor,
Mr Architecture. Indeed, it could hardly be much more than lightweight with only
one or two developers working on the code.

A New Architecture- Evolution of DPIWE e-business applications 11

“DoslT

MrDatabase

A LR ==l R E
Dr Architecture
Clients Object/RPC/Message Server JDBC
Transport Layer
[]) I LO
S
% Commands §
D
. Q
LocalDrEntityBeans ¢ .. % ?ﬁ;}lﬂﬂg
< UPDATE
LocalDrBeanHomes _I) DELETE
- ; : Responses E Queries
LocalEntityContainers
M LocalDrEntityBeans,
LocalDrBeanHomes
ResultSets
RemoteDrEntityBeans
RemoteDrBeanHomes %
- : : RPCs 2
RemoteEntityContainers S EntityContainer
Y ’ 3
4.8 fiPRS ryyl
F?emoteDrSesswnBearﬁ; LocalDrSessionBeans
F?émoteSessionContainers
m (%SessionContainer
m Messages § m
Q
e ¢ "‘, "', '&
©
S
RemoteDrMessageDriven- a ,
‘ Beans Messages ocaIDrI\/IBessageDr/ver -
: - n
RemoteMessageDriven- : :
Containers MessageDrivenContainer

Separation of Concerns

Some important criteria upon which to judge a successful web application are:

* How easily can its style can be changed independent of the content it

provides?

* Style comprises the graphic attributes of data being presented.
e.g. colour, size etc.

Separation of Concerns

» How easily can its content can be changed independent of the business
logic it implements?

 Content comprises the semantic attributes of data being
presented.
e.g. this is a person’s name, this is a geographic coordinate etc.

* How easily can the business logic be changed independent of content and
style?

* Business logic comprises the dynamic behaviour of data.
e.g. how to process a payment, how to store a coordinate, etc.

In a lightweight web application, where some mark-up language is presented for
the client browser for rendering, and requests are generated from the browser
software under control of the mark-up language (and its script elements), the style
and content are combined either in the browser (with CSS), in the server (via XSL
transformation) or some combination. It is also possible for these to be
precombined, but this is not ideal because it means that the answer to the first
question is "not very easily." Unfortunately, many of the DPIWE applications
which use a lightweight approach (the LIST, LIMS and SurCoM) are programmed
this way.

In a heavyweight web application, where software is installed within the client
browser to manages the user interface (Ul) independently of the browser’s
facilities, the division of style and content is the responsibility of that software. For
example, Tasfol/Vistas delegates style by instantiating styled components, which
know how they are to be presented under the current stylistic guidelines, to build
up the Ul content.

In either case, how well the business logic is separated from content and style is
not a matter of technology, but a matter of programming style.

The LIST and LIMS deliver HTML content, but not to any W3C standard format.
Most of the content has been written for and tested on a limited subset of
browsers, and it is only by virtue of being quite a bit older (and therefore using an
older and more widely adopted form of HTML) that the LIST manages to run on
most browsers.

In the LIST, pretty much all the style, content and logic is embedded in the
generating PL/SQL code. There are, of course, minor miracles you can perform
with Perl to suitably mangle the output, but pretty much what you are left with is
a completely unmaintainable amalgam of what should be separate concerns.
LIMS is pretty much in the same boat, with most style, content and logic
embedded in Java servlets, a sprinkling in Java applets, and in (pretty much) god-
knows-what-else. One further complication in both these systems is the heavy use
of client-side technologies like JavaScript. In the LIST, these extensions work in
most browsers, but in LIMS you are stuck with IE.

A New Architecture- Evolution of DPIWE e-business applications 13

STARS is an interesting case. There is evidence of some business logic being
factored out into controller objects, but the main control flow of the application
relies on Ul components undertaking to obey business rules within themselves.
So it is a halfway house where some business logic can be affected independent
of presentation components, but most of the important stuff is embedded in the
UL. Not that STARS really deserves to be criticized for this, as Tasfol/Vistas suffers
from much the same syndrome, though arguably to a lesser extent- see below.

SurCoM uses XHTML as its primary content delivery mechanism. (It also has the
capacity to deliver CSV data, but this is not as pervasive.) Unfortunately, the
mark-up is pure HTML, with no separation of concerns- the JSPs are programmed
with both the content and presentation logic intertwined, with most (but not all)
style contained in a single separate cascading style sheet (CSS). However, at least
by using XHTML, there is some possibility that SurCoM could be unravelled using
an XSL transformation with just a sprinkle of human intervention. Also, it is
probably unfair to say that all logic and content is intertwined- SurCoM uses the
model-view-controller pattern to separate most high-level logic concerns from the
content. The problem is specifically that the view JSPs have logic in them as well
as the controller JSPs, when really this should all be in the controller JSPs or a
third thing.

Tasfol/Vistas does a better job of separating content from logic than most of the
foregoing applications, but there is still some blurring at the edges. Ideally, all
business logic in Tasfol/Vistas would be embedded in the beans, and all
presentation concerns would be left to the Ul classes. But in reality, the
distinction is often not so clear. This is one area, at least, where SurCoM comes
out on top- pretty much all the business logic in SurCoM is in the controller JSPs
and the library classes (including the beans encapsulating records from the data
model), and content is almost the exclusive domain of the remaining view JSPs.
One criticism of SurCoM is that it puts too much logic in the controllers and not
enough in the beans. Tasfol/Vistas strikes more of a balance here, but sacrifices
the (arguably more important) view/controller distinction.

Mr Architecture must wear some of the blame for the Tasfol/Vistas view/controller
blur, because it does not support session beans. Session beans are commonly
used in EJB applications to encapsulate controller functionality, manipulating
groups of beans according to business rules. Without them, a business method
that does not belong in any entity bean is very easily placed in the Ul class which
is most often responsible for initiating the behaviour. That said, it probably
wouldn’t be too hard to move these methods to session beans as they become
available under evolutions of Mr Architecture (like Dr Architecture.)

Separating Content from Logic- The Ms Architecture Extension

14

SurCoM, and future lightweight web applications, would benefit from a
presentation logic abstraction layer that removed all logic from their presentation
components (in SurCoM’s case, view JSPs.) If such a presentation logic abstraction
layer was sufficiently general, it could also be used to generate source code for
the Ul components needed in heavyweight web applications.

Separating Content from Logic- The Ms Architecture Extension

Such a presentation layer is proposed as part of the Ms Architecture Extension. Ms
Architecture would not rely on Mr Architecture directly, but would use bean
introspection to extract data from object representations of data in whatever form:
plain objects, the JavaBean-cum-EJBs using BMP found in SurCoM, the almost-
EJBs using CMP found in Mr Architecture, or full-blown EJBs.

v
Als Architectwe

EXTENSION

Lightweight Clients HTTP(S) (heavyweiht Clients) UModel IF Model/Controller

1d=22 1‘

name=MC%

E Requests Events
Serviets

<html>]

<xml>
<wml>
<soap>

Pages UlObjects Fields JavaBeans/EJBs
View JSPs

Browsers

Unlike Mr Architecture, and other more complete EJB implementations, which
mandate a static deployment step, the Ms Architecture presentation layer will
have the flexibility to operate with or without such a step. Therefore, three modes
of operation of Ms Architecture are proposed:

* Fully static mode, which takes a bean class as input and produces a
template (either source code for a Ul component, or skeletal mark-up
language content) into which bean data can be inserted at run time.

« Slave mode, which provides a JSP tag library which can be used to
introspect beans at run time and produce dynamic content. This tag library
is used in the JSP content forms produced in fully-static mode.

* Fully dynamic mode, which takes a bean object available at run time and
produces a view object or some mark-up which presents the bean content
in a particular form. Code from bean class doer methods will rely on
methods available in fully dynamic mode in order to initiate further user
interactions.

Uls are additionally presented in a number of modes:
* view only mode (UI_ViewOnly),

» view/edit mode (UI_ViewEdit), and

* search mode (UI_Search).

Each possible Ul interaction is then mapped onto a bean which is presented in
one of these modes:

A New Architecture- Evolution of DPIWE e-business applications 15

16

* An introductory or help screen would be modelled as a bean displayed in
view only mode with one field containing the text required.

* A menu would be modelled as a bean with no fields but having a doer
method corresponding to each menu option.

* A search or data entry screen could be modelled directly using an entity
bean (like a Mr Bean), or indirectly through a bean specically crafted to
combine relevant fields ranging across many entity beans.

As an example of how powerful this approach is, it would be possible to
completely decouple the user interface of SurCoM form its business logic layer by
recasting it to use Ms Architecture, because SurCoM consists solely of interactions
of the types already described (with some minor exceptions to do with file import/
export facilities).

Examples of Fully Static Mode

This mode will be most familiar to Mr Architecture developers, as it resembles the
bean deployment step. Indeed, the generation of Java source code from this step
will likely utilize primitives already available in Mr Architecture.

In this mode, Ms Architecture’s StaticTranslator is presented with a compiled
bean class, similar to the way an abstract compiled bean class is provided to the
Mr Architecture DeploymentTool, and then proceeds to generate a static template
which can be used at run time to present the data.

One possibility offered by this mode is customization of the generated template
by developers. With this added power comes the responsibility of deciding when
it is appropriate to modify the generated template. Modification of the template
will almost certainly rule out future automated translations from model to U, for
example.

For example, an OrderForm bean may be transformed into an OrderFormUI class
which extends JPanel, and takes an OrderFormObject and the Ul mode as
parameters to the constructor. The OrderFormObject is the model, and the
OrderFormUlI is the view. Any control actions are defined by doer methods in the
bean which are relevant to the Ul mode specified. e.g. a Search button will be
provided on the panel when instantiated in UI_Search mode, and clicking on it
will activate the doSearch method.

If a bean is statically converted to XHTML, WML or XML, then each leaf element
will have no content except for a comment "<!1-- Insert field here -->". If
converted to WML or XHTML, then three variants are produced- one for each Ul
mode.

An example of the static XML produced for the OrderForm bean might be:

<OrderForm>
<Customer>
<!-- As specified by getOrderFormFieldsQ -->
<code autoMatch><!-- Insert field here --></code>
<name autoMatch><!-- Insert field here --></name>
</Customer>

Examples of Fully Static Mode

<OrderLine repeatable visibleRows="5">
<Product>
<code autoMatch><!-- Insert field here --></code>
<description autoMatch><!-- Insert field here --></description>
<unitPrice readOnly><!-- Insert field here --></unitPrice>
</Product>
<quantity><!-- Insert field here --></quantity>
<totalPrice derived><!-- Insert field here --></totalPrice>
</OrderLine>
<orderTotalExTax derived><!-- Insert field here --></orderTotalExTax>
<orderTax derived><!-- Insert field here --></orderTax>
<orderTotallncTax derived><!-- Insert field here --></orderTotallncTax>
</OrderForm>

A bean may also be statically converted to an XHTML JSP, a WML JSP, or an XML
JSP. In this case the bean content is read from the attribute
au.gov.tas.dpiwe.ms.currentBean in either the page context, request
context, session context or application context (depending on a switch), and JSP
tags available in slave mode are generated as content for each leaf element.

An XML JSP for OrderForm might look like this:

<jsp:root
xmlns:jsp="http://java.sun.com/JSP/Page" >
xmlns:ms="http://developers.dpiwe.tas.gov.au/Ms/JSP" >
version="1.2">
<jsp:useBean
id="au.gov.tas.dpiwe.ms.currentBean"
class="au.gov.tas.dpiwe.ms.example.OrderForm "
scope="request" />
<OrderForm>
<jsp:declaration>
au.gov.tas.dpiwe.ms.example.Customer customer=currentBean.getCustomer(
</jsp:declaration>
<Customer>
<l-- As specified by getOrderFormFieldsQ -->
<code autoMatch>
<ms:format-field>customer.code</ms:format-field>
</code>
<name autoMatch>
<ms:format-field>customer.name</ms:format-field>
</name>
</Customer>
<jsp:declaration>
java.util.Collection orderLines=currentBean.getOrderLinesQ
</jsp:declaration>
<ms:for-each
atLeastOnce
item="orderLine"
type="au.gov.tas.dpiwe.ms.example.OrderLine"
group="orderLines">
<OrderLine repeatable visibleRows="5">
<jsp:declaration>
au.gov.tas.dpiwe.ms.example.Product product=orderLine.getProduct(
</jsp:declaration>
<Product>
<code autoMatch>
<ms:format-field>product.code</ms:format-field>
</code>

A New Architecture- Evolution of DPIWE e-business applications 17

<description autoMatch>
<ms:format-field>product.description</ms:format-field>
</description>
<unitPrice readOnly>
<ms:format-field>product.unitPrice</ms:format-field>
</unitPrice>
<taxable>
<ms:format-field boolean>product.taxable</ms:format-field>
</taxable>
</Product>
<quantity>
<ms:format-field>orderLine.quantity</ms:format-field>
</quantity>
<totalPrice derived>
<ms:format-field>
product.unitPrice*orderLine.quantity
</ms:format-field>
</totalPrice>
</OrderLine>
</ms:for-each>
<orderTotalExTax derived>
<ms:format-field>Sum(orderLines.totalPrice)</ms:calculate-field>
</orderTotalExTax>
<orderTax derived>
<ms:format-field>
au.gov.tas.dpiwe.util.Taxes.taxPayable(orderLines{taxable=true}.totalPrice)
</ms:format-field>
</orderTax>
<orderTotalIncTax derived>
<ms:format-field>
currentBean.orderTotalExTax+currentBean.orderTax
</ms:format-field>
</orderTotalIncTax>
</OrderForm>
</jsp:root>

Tags Available in Slave Mode

Static mark-up language templates are only useful if they can be converted to
concrete mark-up at run time. There are many solutions to this problem, most
involving SGML or XML transcoders. Ms Architecture will provide one possible
solution- JSP templates produced in fully static mode will be converted through
the action of a custom tag library.

To this end, the following tags are provided by slave mode, which are also
invokable from manually created JSPs:

» Formats a numeric or string field. The format parameter is ignored in the
case of a string field.

<ms:format-field format="dJava decimal format">
orphan expression in Ms Architecture format
</ms:format-field>

 Formats the first non-null numeric or string field from a list of possibilities.
The format parameter is ignored in the case of a string field.

18 Tags Available in Slave Mode

<ms:choose-field format="dJava decimal format" >
collection expression in Ms Architecture format

</ms:choose-field>

» Displays one or more possible non-null values for a numeric or string field.
The format is ignored in the case of a string field.

<ms:list-fields
format="dJava decimal format"
layout="one of table, definition, ordered or unordered
list, paragraphs, lines or CSV"
styleO="style name to apply to first possibility"
stylel="style name to apply to second possibility"
>
collection expression in Ms Architecture format

</ms:list-fields>

 Displays the content multiple times, once for each member of an iterator,

array, map range or collection, initializing a scripting variable to refer to the

current member. When atLeastOnce is present, an empty member is
generated if the iterator, array, map or collection is empty.

<ms:for-each
[atLeastOnce]
item="scripting variable to refer to current member"
type="scripting language type of members"
group="scripting variable corresponding to group">
arbitrary content, including other ms tags
</ms:for-each>

» Displays content only if a scripting variable references a value.

<ms:if-there-exists
item="scripting variable"
suchThat="Ilogic expression in Ms Architecture format">
arbitrary content, including other ms tags
</ms:if-there-exists>

For an example of usage, refer to the XML JSP for OrderForm in the previous
section.

A New Architecture- Evolution of DPIWE e-business applications

19

20

Methods Supporting Fully Dynamic Mode

An application constructed around Ms Architecture can be dependent on the
presentation device or independent of it. Clearly, it is not wise to be wholly
device-dependent, but sometimes it can be advantageous to use the full
capabilities of an available device. Where a device-dependent interface is
constructed, a device-independent alternative with possibly restricted
functionality should also be provided. Object-oriented inheritance is perfect for
creating such an arrangement without the need for duplicate Ul code.

Applications based on Ms Architecture will call methods within Ms Architecture
at run time to generate presentation objects or initiate user interface interactions.
To provide an insight into the baseline level of user interface allowed for by Ms

Architecture, some examples of the proposed methods are:

JPanel
SwingUIBuilder(.buildUI(JPanel panel,
Object bean, int uiMode)

void
MarkupUIGenerator(String outputTypel,
String statusMessage])

.presentUI(OutputStream out, Object bean,

int uiMode)

Collection
PresentationManager(
.setMenuOptions(Collection menuOptions)

Collection
PresentationManager().getMenuOptions(

void
PresentationManager(
.setStatusMessage(String statusMessage)

void

PresentationManager().showUI(Object bean,

int uiMode)

Build a user interface
in panel and send events
to doer methods in bean.

Presents a user interface
to a remote lightweight
client which is using the
outputType markup
language. User
interactions arrive back
at the UlServlet and
result in events being
sent to doer methods in
bean.

Sets the collection of
MenuOptions which

are presented to the user
in the current manner
for this user’s session.

Returns a collection of
MenuOptions which
may be mutated- these
are presented to the user
in the current manner
for this user’s session.

Presents status message
in current manner for
this user’s session.

Presents user interface
in current manner for
this user’s session.

Methods Supporting Fully Dynamic Mode

Conclusion

This paper has focused on three key weaknesses in DPIWE web application
development, and has proposed two exercises which will hopefully address two
of these:

* Dr Architecture, to address the problem of migration to standard J2EE
application server arrangements.

» The Ms Architecture Extension, to address the issue of separation of
presentation and business logic concerns within applications.

The third weakness is in the use of modelling tool Rational Rose and its weak
integration into developer workflow. We do not blame the tool, merely the way it
is licensed and deployed within DPIWE. Some solutions have been suggested, but
these will have to be considered further before a decision is taken.

This paper does not seek to imply that these are the only weaknesses in DPIWE
web application development, nor that they are the most important. They are,
however, certainly among the most important. One thing that can be said about
all three is that there is a way forward.

If Dr Architecture is permitted to be the next evolution of the DPIWE web
application infrastructure, and the Ms Architecture Extension is applied
pervasively to address separation of concern issues, then the already successful
range of CIT-developed applications can only grow and improve. At the same
time, reliance on proprietary technologies and in-house experts to know and
understand poorly structured or documented code should also be greatly
reduced.

A New Architecture- Evolution of DPIWE e-business applications 21

Conclusion

