Building Enterprise Database Applications

using Rational Rose, Java and Mr Architecture
A short course by Kade Hansson

Course Contents

« UML, object-orientation and design patterns
« Java language and essential APIs

« Java GUI components and event model

« Java I/0O and TCP/IP sockets

« JDBC, Servlets and JSPs

e Mr Architecture



Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Session Summary

Kade Hansson

* What are the ingredients in building enterprise database applications?

* Modelling methodology and tools
» Language platform and development environment

» Development architecture and middleware

» What is UML.: the unified modelling language?
» What constitutes object-orientation?

 What are design patterns and what do they mean to me?

UML & Rose
Java & IDE

Mr Architecture
(JDBC, Servlets, EJB)



Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Motivation

* Why model?
* Would you build a bridge without blueprints?

* Models communicate complex systems within teams and to stakeholders

* Models help ensure sound structures and architectures are built
* Why visual models?
A picture’s worth a thousand words

* Visual abstractions help comprehension

 Better hope of being universally understood



Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Motivation (continued)

* Why object-orientation?
» Closest to real world while still obeying simple principles
» Widely accepted among software engineering community
« Why UML?
* Rigorous and portable

» Has a widely understood visual notation

» Modelling meta-language of choice for object-oriented or component systems
 Why design patterns?

 Builds upon object-orientation

* Promotes a higher-level kind of reuse: model reuse



Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Motivation (continued)

 Why Rose?
* One of the best known UML tools (mentored by Booch, Rumbaugh et al.)
» Generates code and relational schemas from component models
 Why Java?
* Write once, run anywhere; client or server
* Rich and expanding API set
 Why Mr Architecture?

» Based on accepted Java standards (JDBC, Servlets, EJB, transaction API)
* Promotes rapid development by short circuiting EJB

 Highly efficient, maintainable and scalable



Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

What is UML?

« Common misconception:
 UML is just another object modelling notation, like Booch and OMT
 UML is a modelling meta-language- it is a method of describing notations

 UML can describe Booch concepts
(e.g. Booch Object Scenario Diagram is a UML Collaboration Diagram)

 UML can describe OMT (Rumbaugh et al.) concepts
(e.g. Rumbaugh Class Diagrams are basis of UML Class Diagrams)

 UML can describe other concepts and diagrams not from Booch or OMT
(e.g. Jacobson Interaction Diagram is basis of UML Sequence Diagram)

* Booch, Rumbaugh and Jacobson work for Rational, the main proponents of UML

» Allows general and domain specific extensions



Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

UML & Rose

» All UML document types are supported by Rose Enterprise Edition:

» Collaboration Diagrams- showing a scenario involving components (dyn.)

» Sequence Diagrams- showing interactions between components over time (dyn.)
» State Diagrams- showing possible state changes in components (dyn.)

» Activity Graphs- showing flow of control in a single component action (dyn.)

» Use Case Diagrams- showing how external actors interact with a system (st./dyn.)
» Object Diagrams- showing possible configurations of a live system (st./dyn.)

» Class Diagrams- showing relationships between classes of objects (static)

» Package Diagrams- showing dependencies between packages (static)

« Component Diagrams- showing the connections between subsystems (static)

* Deployment Diagrams- showing how a system will operate in practice (static)



Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Rose & UML

» A Rose Model (extension .mdl) is a UML Model
* A Rose Model may contain many diagrams of each type

» A Rose Model is organised into a hierarchial structure
(this structure is shown in the left pane of the application window)

» The first level of hierarchy is the level of modelling abstraction

» This is not defined by UML, but suggested by the Rational Unified Process (RUP)

* The intent is that you first model business processes, secondly system
processes, thirdly decide on system design and finally lay out the
iImplementation

* Rose, like UML, shares entities and associations between many diagram types

» Changing an entity or relationship on one diagram will change it on all diagrams



Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Rose and Other Notations

» Before Rumbaugh, and later Jacobson, joined Rational,
Rose used only Booch notations

» Today, Rose Enterprise Edition can change notations on the fly

» So, if you are more comfortable with Booch or OMT...

» Use your preferred notation to construct the diagram

* Change it to UML to express it to your team
* If you don’t have a preferred notation, but find UML "too much"...
« Use UML but switch off or avoid applying details like:

» Stereotypes and role names

* Field lists and method lists



10 Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

What Should | Model for a Database Application?

* Probably Use Cases

* Maybe not business-level use cases unless these are complex to grasp

» System-level use cases can help tease out object classes and packages
» Usually Classes

* Where special-purpose classes are needed, it is helpful to model these.
e.g. classes that fulfil application specific GUIs or 10 requirements.

 Definitely {persistent} Classes

» These will allow the construction of prototype beans and database schema from
the model in Rose

* By modelling this in one place, you reduce the possibility of implementation
conflicts between database and application code



11 Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

What Can | Avoid Modelling in a Database Application?

* Most dynamic models

» Usually Collaborations (collaborations are usually straightforward)
» Sometimes Sequences (if use cases are simple)
» Definitely States (because any state machines will be simple)

 Definitely Activities (because method bodies should be short and simple)
 Static models at inappropriate levels of abstraction

 Definitely Objects
(except to communicate particular problematic situations in team scrums)

* Probably Packages, Components and Deployment
(these are more appropriate to systems including their own middleware)



12

Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Why Object Models and not Relational Models?

» Object models are straightforward and clear

» Object models are closer to our perception of reality -
* Object models are not suited to "seek" operations —

* Object models are for people
» Relational models are more rigorous and mathematic

» Relational models lead to efficient "seek" operations +
» Relational models lead to confusion -

* Relational models are for algebraists and computers
* Relational models are a normalized form of object models

» Rose allows us to model using objects and implement using relational schemas



13

Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

What is Object Orientation?

* It's not just modelling using "objects"

» Objects have fields (or attributes)
» Objects have methods (or operations)
» Objects can extend or alter the behaviour of other objects
* Inheritance
» Objects so extended can play the role of the objects they extend
« Polymorphism
» Operations in extended objects can replace those in their generic parent

e Overriding

» An operation can work on many different types (or classes) of object parameters

e Overloading



14 Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Objects have Fields

Vehicle

#numberWheels: int
+mode: LandAirOrSea
-topSpeed: float

* Fields have visibility

 {private}- visible only within object (UML shorthand: —)
» {protected}- visible only in subclasses of an object (UML shorthand: #)

* {public}- visible to all other objects (UML shorthand: +)



15

Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Objects have Methods

Vehicle

+getNumberWheels(): int
#setTopSpeed(:float)
-service()

» Methods have visibility just like fields
» Methods can have parameters of particular types (including other classes)

» Methods can have return values of particular types (including other classes)



16

Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Inheritance
Vehicle
mode
{overlapping, incomplete}
LandVehicle AirVehicle SeaVehicle

* Inheritance is a generalization relationship between classes of objects

» The division of a parent class into children may be accomplished by a

discriminator:

» some field of the parent used to distinguish between the children (e.g. "mode")

» A subset of generalizations based on a single discriminator may be:

e complete or incomplete

» overlapping or disjoint



17

Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

Polymorphism and Multiple Inheritance

Vehicle
mode
{overlapping, incomplete}
LandVehicle AirVehicle SeaVehicle
Hovercraft SeaPlane

* LandVehicle, AirVehicle and SeaVehicle are each Vehicles

(and behave like Vehicle)

* single inheritance

» A Hovercraft is a LandVehicle and a SeaVehicle (and behaves like both)

e multiple inheritance



Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns
Kade Hansson

Overriding and Overloading

SeaVehicle

#hasLateralEngine: boolean
#hasVerticleEngine: boolean

+floats(enginesOn: boolean): boolean
+floats(lateralEngineOn: boolean,
verticleEngineOn: boolean): boolean

Hovercraft SeaPlane
+floats(enginesOn: boolean): boolean +floats(enginesOn: boolean): boolean
+floats(lateralEngineOn: boolean,

verticleEngineOn: boolean): boolean

* floats() in SeaVehicle is overridden in Hovercraft (twice) and SeaPlane (once)

» floats() is overloaded in all classes



19 Building Enterprise Database Applications

Session 1: UML, object-orientation and design patterns
Kade Hansson

What are Design Patterns?
» They are patterns of structure or dynamics or both
» A design pattern may involve many classes, activities, collaborations etc.
* They may be:
» general structures applicable across or within programming paradigms

* e.g. Singleton, Facade, Model-View-Controller, Abstract Factory, Adaptor

* more specific structures or conventions used within languages or architectures

* e.g. Beans, Event Listeners, Adapters

* It is useful to be able to recognise patterns in models so that common wisdom may
be applied

* It is useful to be able to recognise the applicability of patterns when modelling

= specific patterns need to be introduced by example



