
Building Enterprise Database Applications
using Rational Rose, Java and Mr Architecture

A short course by Kade Hansson

Course Contents

• UML, object-orientation and design patterns

• Java language and essential APIs

• Java GUI components and event model

• Java I/O and TCP/IP sockets

• JDBC, Servlets and JSPs

• Mr Architecture

2 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Session Summary

• What are the ingredients in building enterprise database applications?

• Modelling methodology and tools UML & Rose

• Language platform and development environment Java & IDE

• Development architecture and middleware Mr Architecture
(JDBC, Servlets, EJB)

• What is UML: the unified modelling language?

• What constitutes object-orientation?

• What are design patterns and what do they mean to me?

3 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Motivation

• Why model?

• Would you build a bridge without blueprints?

• Models communicate complex systems within teams and to stakeholders

• Models help ensure sound structures and architectures are built

• Why visual models?

• A picture’s worth a thousand words

• Visual abstractions help comprehension

• Better hope of being universally understood

4 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Motivation (continued)

• Why object-orientation?

• Closest to real world while still obeying simple principles

• Widely accepted among software engineering community

• Why UML?

• Rigorous and portable

• Has a widely understood visual notation

• Modelling meta-language of choice for object-oriented or component systems

• Why design patterns?

• Builds upon object-orientation

• Promotes a higher-level kind of reuse: model reuse

5 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Motivation (continued)

• Why Rose?

• One of the best known UML tools (mentored by Booch, Rumbaugh et al.)

• Generates code and relational schemas from component models

• Why Java?

• Write once, run anywhere; client or server

• Rich and expanding API set

• Why Mr Architecture?

• Based on accepted Java standards (JDBC, Servlets, EJB, transaction API)

• Promotes rapid development by short circuiting EJB

• Highly efficient, maintainable and scalable

6 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

What is UML?

• Common misconception:

• UML is just another object modelling notation, like Booch and OMT

• UML is a modelling meta-language- it is a method of describing notations

• UML can describe Booch concepts
(e.g. Booch Object Scenario Diagram is a UML Collaboration Diagram)

• UML can describe OMT (Rumbaugh et al.) concepts
(e.g. Rumbaugh Class Diagrams are basis of UML Class Diagrams)

• UML can describe other concepts and diagrams not from Booch or OMT
(e.g. Jacobson Interaction Diagram is basis of UML Sequence Diagram)

• Booch, Rumbaugh and Jacobson work for Rational, the main proponents of UML

• Allows general and domain specific extensions

7 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

UML & Rose

• All UML document types are supported by Rose Enterprise Edition:

• Collaboration Diagrams- showing a scenario involving components (dyn.)

• Sequence Diagrams- showing interactions between components over time (dyn.)

• State Diagrams- showing possible state changes in components (dyn.)

• Activity Graphs- showing flow of control in a single component action (dyn.)

• Use Case Diagrams- showing how external actors interact with a system (st./dyn.)

• Object Diagrams- showing possible configurations of a live system (st./dyn.)

• Class Diagrams- showing relationships between classes of objects (static)

• Package Diagrams- showing dependencies between packages (static)

• Component Diagrams- showing the connections between subsystems (static)

• Deployment Diagrams- showing how a system will operate in practice (static)

8 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Rose & UML

• A Rose Model (extension .mdl) is a UML Model

• A Rose Model may contain many diagrams of each type

• A Rose Model is organised into a hierarchial structure
(this structure is shown in the left pane of the application window)

• The first level of hierarchy is the level of modelling abstraction

• This is not defined by UML, but suggested by the Rational Unified Process (RUP)

• The intent is that you first model business processes, secondly system
processes, thirdly decide on system design and finally lay out the
implementation

• Rose, like UML, shares entities and associations between many diagram types

• Changing an entity or relationship on one diagram will change it on all diagrams

9 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Rose and Other Notations

• Before Rumbaugh, and later Jacobson, joined Rational,
Rose used only Booch notations

• Today, Rose Enterprise Edition can change notations on the fly

• So, if you are more comfortable with Booch or OMT...

• Use your preferred notation to construct the diagram

• Change it to UML to express it to your team

• If you don’t have a preferred notation, but find UML "too much"...

• Use UML but switch off or avoid applying details like:

• Stereotypes and role names

• Field lists and method lists

10 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

What Should I Model for a Database Application?

• Probably Use Cases

• Maybe not business-level use cases unless these are complex to grasp

• System-level use cases can help tease out object classes and packages

• Usually Classes

• Where special-purpose classes are needed, it is helpful to model these.
e.g. classes that fulfil application specific GUIs or IO requirements.

• Definitely {persistent} Classes

• These will allow the construction of prototype beans and database schema from
the model in Rose

• By modelling this in one place, you reduce the possibility of implementation
conflicts between database and application code

11 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

What Can I Avoid Modelling in a Database Application?

• Most dynamic models

• Usually Collaborations (collaborations are usually straightforward)

• Sometimes Sequences (if use cases are simple)

• Definitely States (because any state machines will be simple)

• Definitely Activities (because method bodies should be short and simple)

• Static models at inappropriate levels of abstraction

• Definitely Objects
(except to communicate particular problematic situations in team scrums)

• Probably Packages, Components and Deployment
(these are more appropriate to systems including their own middleware)

12 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Why Object Models and not Relational Models?

• Object models are straightforward and clear

• Object models are closer to our perception of reality �

• Object models are not suited to "seek" operations �

• Object models are for people

• Relational models are more rigorous and mathematic

• Relational models lead to efficient "seek" operations �

• Relational models lead to confusion �

• Relational models are for algebraists and computers

• Relational models are a normalized form of object models

• Rose allows us to model using objects and implement using relational schemas

13 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

What is Object Orientation?

• It’s not just modelling using "objects"

• Objects have fields (or attributes)

• Objects have methods (or operations)

• Objects can extend or alter the behaviour of other objects

• Inheritance

• Objects so extended can play the role of the objects they extend

• Polymorphism

• Operations in extended objects can replace those in their generic parent

• Overriding

• An operation can work on many different types (or classes) of object parameters

• Overloading

14 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Objects have Fields

Vehicle

#numberWheels: int
+mode: LandAirOrSea
-topSpeed: float

• Fields have visibility

• {private}- visible only within object (UML shorthand:)�

• {protected}- visible only in subclasses of an object (UML shorthand:)#

• {public}- visible to all other objects (UML shorthand:)�

15 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Objects have Methods

Vehicle

+getNumberWheels(): int
#setTopSpeed(:float)
-service()

#numberWheels: int
+mode: LandAirOrSea
-topSpeed: float

• Methods have visibility just like fields

• Methods can have parameters of particular types (including other classes)

• Methods can have return values of particular types (including other classes)

16 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Inheritance

{overlapping, incomplete}

AirVehicleLandVehicle

Vehicle

SeaVehicle

mode

• Inheritance is a generalization relationship between classes of objects

• The division of a parent class into children may be accomplished by a
discriminator:

• some field of the parent used to distinguish between the children (e.g. "mode")

• A subset of generalizations based on a single discriminator may be:

• complete or incomplete

• overlapping or disjoint

17 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Polymorphism and Multiple Inheritance

{overlapping, incomplete}

AirVehicleLandVehicle

Vehicle

SeaVehicle

mode

SeaPlaneHovercraft

• LandVehicle, AirVehicle and SeaVehicle are each Vehicles
(and behave like Vehicle)

• single inheritance

• A Hovercraft is a LandVehicle and a SeaVehicle (and behaves like both)

• multiple inheritance

18 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

Overriding and Overloading

+floats(enginesOn: boolean): boolean

+floats(enginesOn: boolean): boolean

#hasLateralEngine: boolean
#hasVerticleEngine: boolean

+floats(enginesOn: boolean): boolean

Hovercraft SeaPlane

SeaVehicle

+floats(enginesOn: boolean): boolean
+floats(lateralEngineOn: boolean,
 verticleEngineOn: boolean): boolean

+floats(lateralEngineOn: boolean,
 verticleEngineOn: boolean): boolean

• floats() in SeaVehicle is overridden in Hovercraft (twice) and SeaPlane (once)

• floats() is overloaded in all classes

19 Building Enterprise Database Applications
Session 1: UML, object-orientation and design patterns

Kade Hansson

What are Design Patterns?

• They are patterns of structure or dynamics or both

• A design pattern may involve many classes, activities, collaborations etc.

• They may be:

• general structures applicable across or within programming paradigms

• e.g. Singleton, Facade, Model-View-Controller, Abstract Factory, Adaptor

• more specific structures or conventions used within languages or architectures

• e.g. Beans, Event Listeners, Adapters

• It is useful to be able to recognise patterns in models so that common wisdom may
be applied

• It is useful to be able to recognise the applicability of patterns when modelling

� specific patterns need to be introduced by example

