
Building Enterprise Database Applications
using Rational Rose, Java and Mr Architecture

A short course by Kade Hansson

Course Contents

• UML, object-orientation and design patterns

• Java language and essential APIs

• Java GUI components and event model

• Java I/O and TCP/IP sockets

• JDBC, Servlets and JSPs

• Mr Architecture

21 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

What is Java?

• What is Java?

• A programming language invented by Sun Microsystems

• Strongly-typed

• Object-oriented (class-based)

• Imperative (i.e. not "functional" or "logical")

• Syntax closely matches C

• A "write once, run anywhere" runtime system

• A virtual machine employing an interpreter and/or a JIT compiler

• A standard set of APIs (application program interfaces)

22 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

The Building Blocks of Java

• Java programs are built from classes

• A class is a type definition for an object, and also an "object" in itself–
Singleton pattern

• Members belonging to the class are in class scope

• Members belonging to objects (instances of classes) are in instance scope

• All classes (except Object itself) are subclasses of the Java-defined class Object

• Each class (except Object) has a single direct superclass it may inherit from
i.e. Java does not support multiple inheritance

• � each class may have many superclasses it may inherit from, but they form a
unique trace back to the primordial class Object

23 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Interfaces

• Java does not support multiple inheritance, but it does support a second definition-
only inheritance hierarchy which allows a form of it

• A special kind of class, called an interface, defines only abstract methods and
{frozen} fields (UML defines a similar construct without allowing for constants)

• An interface may have zero or many direct superinterfaces, and contains the
union set over all methods and fields defined in them

• A class may also have zero or many direct inplemented interfaces, but if it is not
abstract itself, it must define implementations for all methods in the union set over
all methods in all (both direct and indirect) implemented interfaces

• Because interfaces are abstract by definition, it is redundant (in both UML and
Java) to include any indication of this (similarly for interface methods)

• In most situations, when we talk about classes, subject to the above restrictions, we
include interfaces

24 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

How Does Java Work?

• Programs are written as text files with .java extension

• One public class per file (exception for inner classes)

• If a public class appears:

• it must have the same leaf name as the file

• it should appear in a directory structure matching the package name
(i.e. au.gov.tas.dpiwe.mr.Container should appear in au/gov/tas/dpiwe/mr)

• Programs are created by compiling .java files into .class files

• One .java file may produce many .class files

• Programs are run by interpreting or compiling .class files

• Even when compilation is used, it is rare that object binaries are produced
(this would negate the benefits of write once, run anywhere)

25 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Java Type System

• Divided into two parts:

• primitive (boolean, byte, short, int, long, float, double, char) and reference (to objects or arrays)

• Java is strongly-typed

• A primitive value of a particular type cannot be used directly in a context where
another primitive type is required, unless that type is convertible to the required
type by an automatic widening conversion

• A reference of a particular type can only be used in a context where a reference
to that type, a superclass type or an implemented interface is required

• A primitive value (of any type) cannot be used where a reference type is required
and a reference of a particular type cannot be used where a primitive is required

• A narrowing conversion, where a reference to one type is converted to a
reference to a subclass or subinterface, or where a primitive type is reduced in
precision or width, can be achieved by a cast expression: (Type)Expression

26 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

What is in a Java Source File?

• One package directive (or none, implying the default package)

• Package names are typically reversed internet domain names followed by further
organisation defined naming conventions
(e.g. package au.gov.tas.dpiwe.mr;)

• Multiple import directives (or none– although import java.lang.*; is implicit)

• Exception is made for Java language packages, Java extension packages and
some vendors
(e.g. import java.util.*;

import oracle.jdbc.driver.OracleResultSet;)

• Multiple class or interface declarations
(e.g. public abstract class Container extends BeanBundler

implements UserTransaction, Principal { ... })

• No include directives or other compiler preprocessor directives

27 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Class Heading

• A class declaration consists of multiple modifiers followed by the reserved keyword
class

• Legal class modifiers include:

• Abstraction modifers abstract or

final

• Visibility modifiers (slightly different from UML) public, protected,

none (default) or

private

• Class scope inner class modifier static

• A class continues with the class leaf name, the keyword extends followed by the
(possibly fully-qualified) direct superclass name (optional), then the keyword
implements followed by a comma separated list of (possibly fully-qualified)
implemented interface names (optional.) The body follows this heading.

28 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Interface Class

• A interface class declaration constists of a visibility modifier followed by the
reserved keyword interface

• Visibility modifiers (again, different from UML) public, protected,

none (default) or private

• An interface continues with the interface leaf name, then the keyword extends
followed by a comma separated list of (possibly fully-qualified) direct
superinterface names (optional.) The interface class body follows.

• An interface class body contains only abstract methods, which have no bodies

• The modifier abstract is not used on the method, just as it is not used on the
interface itself

• Instead of a body, an interface method declaration ends with a semi-colon ;
e.g. public int compareTo(Object other);

(similarly for abstract methods in abstract classes)

29 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Class Body

• Classes are bracketed using the block bracketing convention from C:

• A class body begins with an open curly brace {

• A class body ends with a close curly brace }

• The class body is typically indented from the brackets by a tab or two or three
spaces (Java convention)

• A class body consists of member declarations and initializers

• A member is one of:

• A field (also called an attribute in UML)

• A method (also called an operation in UML)

• An inner class, which follows the same syntax as an outer class

30 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Field Declarations

• A field declaration consists of (followed by a semi-colon ; delimiter):

• visibility modifiers public,

(slightly different meaning from UML) protected,

none (default) or

private

• volatility modifier (to resolve multi-threading issues) volatile

• persistence modifier transient

• {frozen} modifier final

• class scope modifier static

• type (possibly fully-qualified) e.g. int or Vector

• name e.g. value

• initializer (optional, preceded by equals =) e.g. new int[] {1}

31 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Method Heading

• A method heading consists of (followed by a method body or semi-colon ;):

• visibility modifiers public,

(slightly different meaning from UML) protected,

none (default) or

private

• concurrency lock modifier (to resolve multi-threading issues) synchronized

• floating point modifier strictfp

• abstraction/implementation modifier abstract or native

• class scope modifier static

• return type (omitted for constructor) e.g. void or String

• name, parameter types and formal names e.g. getValue()

• checked exception clause e.g. throws A, B

32 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Method Signature

• A method’s signature is the combination of a method’s:

• name

• formal parameter types

• return type

• In Java, one can only... overload when... override when...

• the formal parameter types are... different (and return type is) identical

• In a method heading, formal parameters are listed in a comma-separated list
delimited by parentheses ()
e.g. public void operation(ParameterTypeA parameterA,

ParameterTypeB parameterB)

• All primitive type (int, float, char etc.) parameters are "in" (UML) values and
all reference types are "in" (UML) references (or pointers in C nomenclature)

33 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Checked Exceptions

• A checked exception is an exception which a method declares itself to generate
(or throw) during unusual situations particular to that method

• An unchecked exception is an exception which any method might throw due to an
unexpected or unhandled condition occuring (e.g. NullPointerException)

• Unchecked exceptions are subclasses of the Java type RuntimeException

• All other exceptions are checked exceptions. Any method which may throw a checked exception, either directly
using a throw statement, or indirectly by calling a method which declares a checked exception which is not
subsequently caught by the calling method, must declare that exception in the throws clause of its heading.

• An exception is an unusual situation encountered during processing

• Exceptions are represented by subclasses of the Java type Exception

• An error is an unexpected condition in the runtime environment

• Errors are represented by subclasses of the Java type Error

• Errors and Exceptions are instances of the Java type Throwable

34 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

The Throwable Hierarchy

+«constructor»Exception()
+«constructor»Exception(message: String)
+«constructor»Exception(message: String, cause: Throwable)
+initCause(:Throwable)
+getCause():Thowable
+getMessage(): String
+printStackTrace()
+printStrackTrace(:java.io.PrintWriter)

+initCause(:Throwable)
+getCause():Thowable
+getMessage(): String
+printStackTrace()
+printStrackTrace(:java.io.PrintWriter)

+«constructor»Error()
+«constructor»Error(message: String)
+«constructor»Error(message: String, cause: Throwable)
+initCause(:Throwable)
+getCause():Thowable
+getMessage(): String
+printStackTrace()
+printStrackTrace(:java.io.PrintWriter)

Exception Error

Throwable

java.lang.reflectjava.util

java.iojava.security

java.sql

NullPointer...

IllegalState...

Arithmetic...

IndexOutOf... ArrayStore...

ClassCast...

UnsupportedOp... SecurityException

RuntimeException

NegativeArray... IllegalMonitor...

NoSuchElement...

Concurrent...

TooManyListeners...

EmptyStack...

MissingResource...

UndeclaredThrow...

InvocationTarget... ClassNotFound...

CloneNotSupport... NoSuchMethod...

SQLException Instantiation...

IOException

Interrupted...

NoSuchField...

NoClassDef... UnsatisfiedLink... VerifyError

IncompatibleClass...

LinkageError

ExceptionInInit...ClassFormat...ClassCircularity...

ThreadDeath

OutOfMemory...InternalError

VirtualMachine...

UnknownError StackOverflow...

. . .

. . .

. . .

35 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Instance Scope versus Class Scope

• The body of an instance scope method or an initializer may refer to:

• members of the class or instance as if they were local variables or parameters,
unless an identical name is used for a local variable or parameter

• members of the instance using the explicit notation this.MemberName

• class scope members (and class scope members in other classes, where
visibility permits) using the notation ClassName.MemberName

• The body of a class scope method or initializer may refer to:

• members of the class only as if they were local variables or parameters, unless
an identical name is used for a local variable or parameter

• class scope members (and class scope members in other classes, where
visibility permits) using the notation ClassName.MemberName

• N.B. here, the MemberName of a method must include an actual parameter list

36 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Superclass Scope and Constructor Delegation

• The body of an instance scope method or an initializer may refer to:

• members of the superinstance using the explicit notation super.MemberName,
particularly in the case where an identical name is used for a local variable,
parameter or subclass member

• in a constructor only, an immediate superclass constructor, but only as the first
statement, using the notation super(ActualParameterList)

• in a constructor only, another constructor in the same class, but only as the first
statement, using the notation this(ActualParameterList)

• N.B. here again, the MemberName of a method must include an actual parameter list

37 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

«constructor» Methods

+«constructor»MyObject()
+«constructor»MyObject(:int)
+«constructor»MyObject(:int,:String)

MyObject

#integer: int
#string: String

�

class MyObject {
int integer;
String string;
public MyObject() {

integer=null; string=null;
}
public MyObject(int integer) {

this(integer,null); // Special notation to
// call constructor below

}
public MyObject(int integer, String string) {

this.integer=integer; this.string=string;
}

}

38 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Initializers and Class Scope

• A class scope member or initializer is prefixed by the keyword static, exists without
reference to any instance, and is effectively shared among any instances that do
exist. For example...

• class CountedObject {
private static int instanceCount=0;
public CountedObject() { instanceCount++; }
public int getInstanceCount() { return instanceCount; }

}

• class SharedResourceManager {
private static SharedResource sharedResource=new SharedResource();
static {

sharedResource.init();
}
public static SharedResource getSharedResource() {

return sharedResource;
}
public void finalize() { sharedResource.destroy(); }

}

• Instance initializers outside field declarations are much less common– they are
executed prior to the constructor but without knowledge of constructor parameters

39 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Inner Classes and Class Scope Inner Classes

• Inner classes may appear in class bodies like any other class members

• Each inner class instance (except one which has class scope) is associated with its
parent instance(s)

• Inner classes can refer to any member of its parent instance(s) as if it were a
member of the inner class unless there is an identically named member in the
inner class or its superclasses

• Inner classes can refer to any parent instance explicitly using the notation
ClassName.this (and to members using the notation ClassName.this.MemberName)

• Class scope inner classes cannot refer to parent instances at all, but they can refer
to static members using implicit or explicit notation

40 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Method and Initializer Body

• The body of a method (constructor or class scope) or initializer (class or instance
scope) is called a block

• Blocks nest, and consist of statements or sub-blocks– Component pattern

• A block is delimited by curly braces { }, and is indented as for a class body

• Statements appearing in a block are separated by semi-colons ;

• The last statement in a block must be followed by a semi-colon ;

• Some statements may contain blocks as part of their syntax

• Other statements must be separated from anonymous sub-blocks which follow
them by semi-colons

• N.B. if (flag); { System.out.println("flag true"); }
(displays flag true always) has different semantics to
if (flag) { System.out.println("flag true"); }
(displays flag true only if flag==true)

41 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Java Statements

• Empty statement ;

• Declaration (statement) int value=1;

• Expression statements a=b+1;

a();

new Hashtable(10);

• Conditional and selection statements if (flag) a(); else b();

if (condition1) {

 a();

} elsif (condition2) {

 b();

}

switch (primitive) {

 case 1: a(); break;

 otherwise: b();

}

42 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Java Statements (continued)

• Iteration statements for (int i=0; i<10; i++)

 a(i);

while (loop) a();

do {

 a(); b();

} while (loop);

• Exception handler try {

 a();

} catch (IOException x) {

 b();

} catch (Exception x) {

} finally {

 c();

}

• Loop or method escape statement break; or return;

43 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Java Operators

• Assignment operator =

• Arithmetic operators

• add, subtract, multiply, divide, modulus +, -, *, /, %

• add, subtract, multiply, divide, modulus and accumulate +=, -=, *=, /=, %=

• pre- or post-increment, positive or negative (unary) ++, --, +, -

• Bitwise and logical operators

• or, and, exclusive-or |, &, ^

• or, and, exclusive-or and accumulate |=, &=, ^=

• short-circuit or, and ||, &&

• bitwise not, logical not (unary) ~, !

44 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Java Operators (continued)

• Comparison operators

• less, less-equal, greater, greater-equal, equal, not-equal <, <=, >, >=, ==, !=

• Shift operators

• shift left, shift right, rotate right <<, >>, >>>

• shift left, shift right, rotate right and accumulate <<=, >>=, >>>=

• Conditional operator

• The conditional operator provides for selection of one of two possible
computations based on the result of a boolean computation
e.g. flag?whenTrue:whenFalse

• String concatenation operator +

(if just one operand is String, do toString() on object wrapper of other)

45 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Object Wrappers for Primitive Types

+«constructor»Character(:char)
+charValue(): char
+equals(:Object): boolean
+hashCode(): int
+toString(): String
+compareTo(:Object): int
+compareTo(:Character): int

+«constructor»Object()
+equals(): boolean
+hashCode(): int
#clone(): Object
+toString(): String

Object

+«constructor»Number()
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double

+TYPE {frozen}+TYPE {frozen}

+compareTo(:Object): int

Comparable

«type» Void

+hashCode(): int
+toString(): String
+compareTo(:Object): int
+compareTo(:Byte): int

+TYPE {frozen}: Class

+hashCode(): int
+toString(): String
+compareTo(:Object): int
+compareTo(:Short): int

+hashCode(): int
+toString(): String
+compareTo(:Object): int
+compareTo(:Integer): int

+hashCode(): int
+toString(): String
+compareTo(:Object): int
+compareTo(:Float): int

+hashCode(): int
+toString(): String
+compareTo(:Object): int
+compareTo(:Double): int

+hashCode(): int
+toString(): String
+compareTo(:Object): int
+compareTo(:Long): int

. . .

. . .

+MIN_VALUE {frozen}: byte
+MAX_VALUE {frozen}:byte

+TYPE {frozen}: Class
+MIN_VALUE {frozen}: short
+MAX_VALUE {frozen}: short

+TYPE {frozen}: Class
+MIN_VALUE {frozen}: int
+MAX_VALUE {frozen}: int

+TYPE {frozen}: Class
+MIN_VALUE {frozen}: long
+MAX_VALUE {frozen}: long

+TYPE {frozen}: Class
+MIN_VALUE {frozen}: float
+MAX_VALUE {frozen}: float

+TYPE {frozen}: Class
+MIN_VALUE {frozen}: double
+MAX_VALUE {frozen}: double

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double

{final} {final}{final}{final}{final}{final}

{final}{final}

+«constructor»Short(:short) +«constructor»Integer(:int) +«constructor»Float(:float) +«constructor»Double(:double)+«constructor»Long(:long)+«constructor»Byte(:byte)
+«constructor»Byte(:String) +«constructor»Short(:String) +«constructor»Integer(:String) +«constructor»Float(:String) +«constructor»Double(:String)+«constructor»Long(:String)
+equals(:Object): boolean +equals(:Object): boolean +equals(:Object): boolean +equals(:Object): boolean +equals(:Object): boolean+equals(:Object): boolean

«type» Double«type» Float«type» Long«type» Integer«type» Short«type» Byte

«type» Number «type» Character

• Each primitive type has its own object wrapper

• Object wrappers are immutable

• Once an object wrapper is constructed, its value cannot change

• Immutability leads to the application of the class stereotype «type» in UML

46 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Java Literals

• Null reference literal null

• Boolean literals true, false

• Numeric literals

• Octal (int) -0173

• Octal (long) -0173L

• Decimal (int) -123

• Decimal (long) -123L

• Decimal with fraction -123.456

• Exponential decimal (-123.456 � 10-78) -123.456E-78

• Hexadecimal -0x7B

47 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Java Literals (continued)

• Character literals

• Non-escaped ’a’ , ’1’ , ’&’

• Escaped ’’’’ , ’\’’ ,’\\’

• Special characters ’\r’ , ’\t’ , ’\n’

• Unicode characters ’\u2297’ , ’ � ’

• String literals

• Non-escaped "Hello world!"

• Escaped "My name is \"Fred\""

• Special characters "Line 1\nLine 2"

• Unicode characters "Unicode 2297 is � "

48 Building Enterprise Database Applications
Session 2: Java language and essential APIs

Kade Hansson

Essential Java APIs

• The System class

• System.in
• System.out

• The PrintWriter class

• The Array and Arrays classes

• The Math class

• The Collection API

• Interfaces
• Collection, List, Set, SortedSet, Map, SortedMap, Iterator

• Abstract classes
• AbstractCollection, AbstractList, AbstractSet, AbstractSortedSet, AbstractMap, AbstractSortedMap

• Implementations
• Vector, LinkedList, HashSet, TreeSet, HashMap, TreeMap

