
Building Enterprise Database Applications
using Rational Rose, Java and Mr Architecture

A short course by Kade Hansson

Course Contents

• UML, object-orientation and design patterns

• Java language and essential APIs

• Java GUI components and event model

• Java I/O and TCP/IP sockets

• JDBC, Servlets and JSPs

• Mr Architecture



50 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

The Applet Convention

• The applet convention allows Java to run in a web browser

• Applets are included in HTML pages using the object or applet tag:

• <applet code="ClassName.class" width="widthInPixels" height="heightInPixels">

  <param name="name" value="value" />

</applet> 

• More at http://java.sun.com/docs/books/tutorial/applet/appletsonly/html.html

• An applet implements a GUI (graphical user interface)

• An applet is a subclass of the class Applet

• Most AWT applets will override the Applet.paint method

• Most applets will need to implement "listener" interfaces



51 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Applet Life Cycle

• An applet has a well-defined lifecycle

• States

• loaded

• initialized

• started

• stopped

• finalized

• unloaded

• Transitions

• It is initialized, when it prepares itself to be run (the init method)

• It is started and stopped, possibly many times (the start and stop methods)

• It is finalized, whereupon it performs a final tidy-up (the destroy method)



52 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Applet Security

• An applet cannot execute arbitrary code via System.exec()

• An applet can't read or write files on the local system

• An applet cannot make arbitrary network connections

• An applet cannot resolve a name directly

• An applet is allowed to connect to the host it originated from

• An applet cannot print (but it’s GUI can be printed)

• Applet windows (where outside a web page) are clearly identified as such to
prevent "spoofing"

• If you need to do any of this, you probably shouldn’t be writing an applet, but check
out http://java.sun.com/docs/books/tutorial/security1.2/index.html



53 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Abstract Window Toolkit

• AWT piggy-backs on platform defined widgets

• Fast +

• Economical +

• Simple to use +

• Messy results –

• Inflexible –

• Restricted set of widgets –



54 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

AWT Components and Containers

• Component

• Canvas- something to draw on

• Button- fires ActionEvents

• Checkbox- registers choices

• Choice- a button with a drop down menu

• Label- contains some text

• List- an (scrollable) in-line list of options

• Scrollbar

• TextComponent- for user-editable fields

• Container is a Component– Composite pattern

• Panel- generic container

• ScrollPane- scrollable container

• Window- with resize, close, minimize, maximize gadgets etc.



55 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Painting

• A typical Applet will need to "paint" in its window
(or at least get the AWT or some other toolkit to paint on its behalf)

• Painting is done by overriding the update()  or paint()  method

• The AWT calls update()  to paint the whole of a Component , such as an Applet 's window

• By default, Component.update()  clears its area and calls paint()  (possibly many times)

• Typically, to specify how to draw on an area, you merely override paint()

• paint() may be called multiple times during a single update, once for each visible rectangle of the component

• If you change something visible in a Component , and want it to be rerendered, you call Component.repaint()
(which will by default schedule a call to update()  ASAP)

• Efficiency in animation applications can be improved by maintaining an Image  (or two 1) for the Component 's
area, and simply painting that at each call to update()

• You may see something called PaintEvent  in the forthcoming slide... It’s internal to AWT– it is not used with the
Event Listener model and is shown only for completeness

1 This is called double-buffering



56 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Events

• All events are subclasses of EventObject2

• Method getSource() returns Object which caused Event
(and with which EventListeners are registered)

• ComponentEvent

• ContainerEvent3, FocusEvent (FOCUS_GAINED, FOCUS_LOST), PaintEvent3, WindowEvent
(WINDOW_ACTIVATED, WINDOW_CLOSED, WINDOW_CLOSING, WINDOW_DEACTIVATED,
WINDOW_DEICONIFIED, WINDOW_ICONIFIED, WINDOW_OPENED)

• InputEvent

• KeyEvent (KEY_PRESSED, KEY_RELEASED, KEY_TYPED)

• MouseEvent (MOUSE_PRESSED, MOUSE_RELEASED, MOUSE_CLICKED, MOUSE_ENTERED,
MOUSE_EXITED, MOUSE_DRAGGED, MOUSE_MOVED) 4

2 Event is defunct – it was used by the Java 1.0 event model
3 Used internally by AWT – these methods do not follow the Event Listener model
4 Both MouseListener and MouseMotionListener use this event



57 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Java Foundation Classes – AKA Swing

• Swing renders its own platform-independent set of widgets using double-buffering

• Clean look across platforms +

• Good use of design patterns +

• Rich set of widgets +

• Accessibility +

• Slower that AWT –

• More memory hungry –



58 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Swing Components and Containers

• JComponent

• JFrame is a window with a border- it contains a JPanel which holds the window
contents

• JApplet is similar to JFrame, but is used to make Swing applets– it may be
embedded in a web browser

• JPanel is the Swing equivalent to Container

• JPanel is a Container which is used as a "frame" to hold other JComponents



59 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Swing Widgets

• JLabels are used for static text and graphics

• JButtons are interactive components which the user may click on– an ActionEvent is delivered to all the button's
ActionListeners when this happens

• JToggleButtons are similar to JButtons, except you usually interrogate their state instead of responding to events

• JCheckBoxes, which are like boxes you tick on printed forms

• JRadioIcons, which are like boxes in multiple choice quizzes

• JScrollPanes, which is used to put scroll bars on a JViewport

• JViewports are components which are used to impose a cropped view on a larger group of components.

• JTextComponents, which are used to contain editable text. Examples are:

• JTextFields, which are for single lines of text ( JPasswordFields, which obscure their input)

• JTextAreas, which allow multiple lines of text

• JTextPanes, which provide fully-featured editor windows

• JEditorPanes, which provide for marked-up text like HTML



60 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

Still More Swing Widgets

• JScrollBars, for implementing scroll bars

• JSlider controls

• JProgressBar indicators

• JComboBoxes, allowing data entry via a pull-down list

• JBorders, for putting pretty borders around other components. Examples are:

• AbstractBorder, an abstract class that implements the Border interface, but does nothing

• BevelBorder, a 3D border that may be raised or lowered

• CompoundBorder, a border that can nest multiple borders

• EmptyBorder, a border where you specify the reserved space for an undrawn border

• EtchedBorder, a border that appears as a groove, instead of raised or lowered

• LineBorder, a border for single color borders, with arbitrary thickness

• MatteBorder, a border that permits tiling of an icon or color

• SoftBevelBorder, a 3D border with softened corners

• TitledBorder, a border that permits title strings in arbitrary locations



61 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

The Last of the Swing Widgets

• JMenuBars, for providing pull down menus– these are constructed from:

• JMenus, which are lists of JMenuItems, JSeparators and possibly further JMenus

• JMenuItems, which represent a single leaf menu option. Special examples are:

• JCheckBoxMenuItems, which are check boxes embedded in menus

• JRadioIconMenuItems, which are radio icons embedded in menus

• JSeparators, which are used to break-up menu options

• JToolBars, for providing sets of tool buttons

• JTabbedPanes, where multiple panes can be called up by clicking on exposed tabs

• JSplitPanes, which allows you to resize adjoining components together

• JLists, where the user chooses items from a list

• JTables and JTrees, for displaying tabular and hierarchial data

• JPopupMenus, which are special JMenus (see above) which may be assigned to pop-up over certain JComponents



62 Building Enterprise Database Applications
Session 3: Java GUI components and event model

Kade Hansson

But Don’t Forget...

• Icon allows graphics to be included as part of a component

• The most common form of Icon is given by the subclass ImageIcon

• Constructor takes the name of an image resource
e.g. Icon tinyPicture = new ImageIcon("TinyPicture.gif");


