Building Enterprise Database Applications

using Rational Rose, Java and Mr Architecture
A short course by Kade Hansson

Course Contents

« UML, object-orientation and design patterns
» Java language and essential APIs

« Java GUI components and event model

« Java I/O and TCP/IP sockets

« JDBC, Servlets and JSPs

« Mr Architecture

50

Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

The Applet Convention

* The applet convention allows Java to run in a web browser
» Applets are included in HTML pages using the obj ect Or appl et tag:

® <appl et code="ClassName. cl ass" w dt h="widthinPixels" hei ght =" heightinPixels" >
<par am nane="name" val ue="value" />
</ appl et >

* More at http://java.sun.com/docs/books/tutorial/applet/appletsonly/html.html

» An applet implements a GUI (graphical user interface)
« An applet is a subclass of the class Applet
* Most AWT applets will override the Appl et . pai nt method

* Most applets will need to implement "listener" interfaces

51 Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

Applet Life Cycle

» An applet has a well-defined lifecycle

e States

* |loaded

* initialized
 started

» stopped
* finalized

* unloaded
e Transitions
e It is initialized, when it prepares itself to be run (the i ni t method)

* It is started and stopped, possibly many times (the st art and st op methods)

o It is finalized, whereupon it performs a final tidy-up (the dest r oy method)

52

Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

Applet Security

* An applet cannot execute arbitrary code via Syst em exec()
« An applet can't read or write files on the local system

» An applet cannot make arbitrary network connections

* An applet cannot resolve a name directly

* An applet is allowed to connect to the host it originated from

» An applet cannot print (but it's GUI can be printed)

» Applet windows (where outside a web page) are clearly identified as such to
prevent "spoofing"

* If you need to do any of this, you probably shouldn’t be writing an applet, but check
out http://java.sun.com/docs/books/tutorial/securityl1.2/index.html

53

Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

Abstract Window Toolkit

 AWT piggy-backs on platform defined widgets

e Fast +
 Economical +
» Simple to use +

* Messy results —
* Inflexible —

» Restricted set of widgets —

54

Building Enterprise Database Applications
Session 3: Java GUI components and event model

AWT Components and Containers

 Component

Canvas- something to draw on

Button- fires ActionEvents

Checkbox- registers choices

Choice- a button with a drop down menu
Label- contains some text

List- an (scrollable) in-line list of options
Scrollbar

TextComponent- for user-editable fields
Container is a Component— Composite pattern

» Panel- generic container
e ScrollPane- scrollable container

* Window- with resize, close, minimize, maximize gadgets etc.

Kade Hansson

55 Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

Painting

* A typical Applet will need to "paint" in its window
(or at least get the AWT or some other toolkit to paint on its behalf)

» Painting is done by overriding the update() or paint() method

» The AWT calls update() to paint the whole of a Component , such as an Applet 's window

» By default, Component.update() clears its area and calls paint() (possibly many times)

» Typically, to specify how to draw on an area, you merely override paint()

» paint() may be called multiple times during a single update, once for each visible rectangle of the component

 If you change something visible ina Component , and want it to be rerendered, you call Component.repaint()
(which will by default schedule a callto update() ASAP)

* Efficiency in animation applications can be improved by maintaining an Image (or two 1) for the Component 's
area, and simply painting that at each callto update()

* You may see something called PaintEvent in the forthcoming slide... It's internal to AWT—- it is not used with the
Event Listener model and is shown only for completeness

1 This is called double-buffering

56 Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

Events

« All events are subclasses of EventObject?

» Method getSource() returns Object which caused Event
(and with which EventListeners are registered)

 ComponentEvent

» ContainerEvent?3, FocusEvent (FOCUS_GAINED, FOCUS_LOST), PaintEvent3, WindowEvent
(WINDOW_ACTIVATED, WINDOW_CLOSED, WINDOW_CLOSING, WINDOW_DEACTIVATED,
WINDOW_DEICONIFIED, WINDOW _ICONIFIED, WINDOW_OPENED)

* InputEvent

* KeyEvent (KEY_PRESSED, KEY_RELEASED, KEY_TYPED)

» MouseEvent (MOUSE_PRESSED, MOUSE_RELEASED, MOUSE_CLICKED, MOUSE_ENTERED,
MOUSE_EXITED, MOUSE_DRAGGED, MOUSE_MOVED) #

2 Event is defunct — it was used by the Java 1.0 event model
3 Used internally by AWT — these methods do not follow the Event Listener model
4 Both MouseListener and MouseMotionListener use this event

57

Building Enterprise Database Applications
Session 3: Java GUI components and event model

Java Foundation Classes — AKA Swing

Kade Hansson

» Swing renders its own platform-independent set of widgets using double-buffering

» Clean look across platforms
» Good use of design patterns
* Rich set of widgets

» Accessibility

 Slower that AWT

* More memory hungry

+

+

58 Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

Swing Components and Containers

» JComponent

* JFrame is a window with a border- it contains a JPanel which holds the window
contents

» JApplet is similar to JFrame, but is used to make Swing applets— it may be
embedded in a web browser

» JPanel is the Swing equivalent to Container

« JPanel is a Container which is used as a "frame" to hold other JComponents

59

Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

Swing Widgets

JLabels are used for static text and graphics

JButtons are interactive components which the user may click on— an ActionEvent is delivered to all the button's
ActionListeners when this happens

JToggleButtons are similar to JButtons, except you usually interrogate their state instead of responding to events

» JCheckBoxes, which are like boxes you tick on printed forms

» JRadiolcons, which are like boxes in multiple choice quizzes

JScrollPanes, which is used to put scroll barsona JViewport
JViewports are components which are used to impose a cropped view on a larger group of components.

JTextComponents, which are used to contain editable text. Examples are:

» JTextFields, which are for single lines of text (JPasswordFields, which obscure their input)
» JTextAreas, which allow multiple lines of text
» JTextPanes, which provide fully-featured editor windows

» JEditorPanes, which provide for marked-up text like HTML

60

Building Enterprise Database Applications
Session 3: Java GUI components and event model

Still More Swing Widgets

JScrollBars, for implementing scroll bars

JSlider controls

JProgressBar indicators

JComboBoxes, allowing data entry via a pull-down list

JBorders, for putting pretty borders around other components. Examples are:

» AbstractBorder, an abstract class that implements the Border interface, but does nothing
» BevelBorder, a 3D border that may be raised or lowered

» CompoundBorder, a border that can nest multiple borders

EmptyBorder, a border where you specify the reserved space for an undrawn border

EtchedBorder, a border that appears as a groove, instead of raised or lowered
* LineBorder, a border for single color borders, with arbitrary thickness

» MatteBorder, a border that permits tiling of an icon or color

» SoftBevelBorder, a 3D border with softened corners

 TitledBorder, a border that permits title strings in arbitrary locations

Kade Hansson

61 Building Enterprise Database Applications
Session 3: Java GUI components and event model

The Last of the Swing Widgets

* JMenuBars, for providing pull down menus— these are constructed from:

* JMenus, which are lists of JMenultems, JSeparators and possibly further JMenus

* JMenultems, which represent a single leaf menu option. Special examples are:

* JCheckBoxMenultems, which are check boxes embedded in menus

* JRadiolconMenultems, which are radio icons embedded in menus
» JSeparators, which are used to break-up menu options

» JToolBars, for providing sets of tool buttons

» JTabbedPanes, where multiple panes can be called up by clicking on exposed tabs
» JSplitPanes, which allows you to resize adjoining components together

» JLists, where the user chooses items from a list

» JTables and JTrees, for displaying tabular and hierarchial data

» JPopupMenus, which are special JMenus (see above) which may be assigned to pop-up over certain

Kade Hansson

JComponents

62

Building Enterprise Database Applications

Session 3: Java GUI components and event model
Kade Hansson

But Don’t Forget...

* Icon allows graphics to be included as part of a component
* The most common form of Icon is given by the subclass Imagelcon

« Constructor takes the name of an image resource
€.g.lcon tinyPicture = new I magel con("Ti nyPicture.gif");

